Stability results for the nonlinear Schrödinger equation on Diophantine tori
[Résultats de stabilité pour l’équation de Schrödinger non linéaire sur des tores diophantiens]
Journées équations aux dérivées partielles (2024), Exposé no. 3, 15 p.

We present two results of enhanced long-time stability for the nonlinear Schrödinger equation posed on rescaled tori with Diophantine properties. This proceeding for the conference “Journées Équations aux dérivées partielles” is the opportunity to give a glimpse on modern methods at the interface of PDEs and classical mechanics that are currently being developed to study the long-time dynamics of Hamiltonian resonant PDEs.

Nous présentons deux résultats de stabilité en temps long pour l’équation de Schrödinger non linéaire posée sur des tores diophantiens. Ce proceeding pour la conférence “Journées Équations aux dérivées partielles” offre l’occasion de présenter des méthodes modernes à l’interface des équations aux dérivées partielles (EDP) et de la mécanique classique, actuellement en cours de développement pour étudier la dynamique d’EDP hamiltoniennes résonantes.

Publié le :
DOI : 10.5802/jedp.684
Classification : 35B34, 35B35, 35Q55, 37K45, 37K55

Camps, Nicolas  1

1 IRMAR - UMR CNRS 6625 Univ Rennes F-35000 Rennes FRANCE
@incollection{JEDP_2024____A3_0,
     author = {Camps, Nicolas},
     title = {Stability results for the nonlinear {Schr\"odinger} equation on {Diophantine} tori},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:3},
     pages = {1--15},
     year = {2024},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.684},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.684/}
}
TY  - JOUR
AU  - Camps, Nicolas
TI  - Stability results for the nonlinear Schrödinger equation on Diophantine tori
JO  - Journées équations aux dérivées partielles
N1  - talk:3
PY  - 2024
SP  - 1
EP  - 15
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.684/
DO  - 10.5802/jedp.684
LA  - en
ID  - JEDP_2024____A3_0
ER  - 
%0 Journal Article
%A Camps, Nicolas
%T Stability results for the nonlinear Schrödinger equation on Diophantine tori
%J Journées équations aux dérivées partielles
%Z talk:3
%D 2024
%P 1-15
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.684/
%R 10.5802/jedp.684
%G en
%F JEDP_2024____A3_0
Camps, Nicolas. Stability results for the nonlinear Schrödinger equation on Diophantine tori. Journées équations aux dérivées partielles (2024), Exposé no. 3, 15 p.. doi: 10.5802/jedp.684

[1] Arnol’d, V. I. Instability of dynamical systems with several degrees of freedom, Sov. Math., Dokl., Volume 5 (1964), pp. 581-585

[2] Bambusi, D. Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., Volume 230 (1999) no. 2, pp. 345-387 | DOI | MR

[3] Bambusi, D.; Delort, J.-M.; Grébert, B.; Szeftel, J. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1665-1690 | DOI | MR

[4] Bambusi, D.; Feola, R.; Montalto, R. Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori, Commun. Math. Phys., Volume 405 (2024) no. 1, 15, 50 pages | DOI | MR

[5] Bambusi, D.; Gérard, P. Derivation of the homogeneous kinetic wave equation: longer time scales (2023) | arXiv

[6] Bambusi, D.; Grébert, B. Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., Volume 135 (2006), pp. 507-567 | DOI | MR

[7] Bernier, J.; Camps, N. Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori (2024) | arXiv

[8] Bernier, J.; Faou, E.; Grébert, B. Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, Volume 6 (2020) no. 2, 14, 64 pages | DOI | MR

[9] Berti, M.; Maspero, A. Long time dynamics of Schrödinger and wave equations on flat tori, J. Differ. Equations, Volume 267 (2019) no. 2, pp. 1167-1200 | MR | DOI

[10] Berti, M.; Maspero, A.; Murgante, F. Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence, Ann. PDE, Volume 10 (2024) no. 2, 22, 150 pages | DOI

[11] Bourgain, J. On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math., Volume 77 (1999), pp. 315-348 | DOI

[12] Bourgain, J. On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., Volume 80 (2000), pp. 1-35 | DOI

[13] Bourgain, J. Problems in Hamiltonian PDE’s, GAFA 2000. Visions in mathematics—Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25–September 3, 1999. Part I., Birkhäuser, 2000, pp. 32-56

[14] Bourgain, J.; Kaloshin, V. On diffusion in high-dimensional Hamiltonian systems, J. Funct. Anal., Volume 229 (2005) no. 1, pp. 1-61 | DOI | MR

[15] Burq, N.; Gérard, P.; Tzvetkov, N. Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005) no. 1, pp. 187-223 | DOI | MR

[16] Camps, N.; Staffilani, G. Modified scattering for the cubic Schrödinger equation on diophantine waveguides (2024) | arXiv

[17] Carles, R.; Faou, E. Energy cascades for NLS on the torus, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 6, pp. 2063-2077 | DOI | MR

[18] Chen, X. Existence of modified wave operators and infinite cascade result for a half wave Schrödinger equation on the plane, J. Funct. Anal., Volume 286 (2024) no. 2, 110222, 74 pages | DOI | MR

[19] Colliander, J. E.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., Volume 181 (2010) no. 1, pp. 39-113 | DOI | MR

[20] Collot, C.; Germain, P. Derivation of the homogeneous kinetic wave equation: longer time scales (2020) | arXiv

[21] Delort, J.-M. Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Commun. Partial Differ. Equations, Volume 39 (2014) no. 1, pp. 1-33 | DOI | MR

[22] Deng, Y. On growth of Sobolev norms for energy critical NLS on irrational tori: small energy case, Commun. Pure Appl. Math., Volume 72 (2019) no. 4, pp. 801-834 | MR | DOI

[23] Deng, Y.; Germain, P. Growth of solutions to NLS on irrational tori, Int. Math. Res. Not., Volume 2019 (2019) no. 9, pp. 2919-2950 | DOI | MR

[24] Deng, Y.; Germain, P.; Guth, L. Strichartz estimates for the Schrödinger equation on irrational tori, J. Funct. Anal., Volume 273 (2017) no. 9, pp. 2846-2869 | DOI | MR

[25] Deng, Y.; Germain, P.; Guth, L.; Myerson, S. L. R. Strichartz estimates for the Schrödinger equation on non-rectangular two-dimensional tori, Am. J. Math., Volume 144 (2022) no. 3, pp. 701-745 | DOI | MR

[26] Germain, P. Space-time resonances, Journ. Équ. Dériv. Partielles (2010), 8, 10 pages | Numdam

[27] Giuliani, F.; Guardia, M. Sobolev norms explosion for the cubic NLS on irrational tori, Nonlinear Anal., Theory Methods Appl., Volume 220 (2022), 112865, 25 pages | DOI | MR

[28] Grébert, B.; Paturel, E.; Thomann, L. Modified scattering for the cubic Schrödinger equation on product spaces: the nonresonant case, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 841-861 | DOI | MR

[29] Guardia, M.; Kaloshin, V. Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 17 (2015) no. 1, pp. 71-149 | DOI | MR

[30] Hani, Z. Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 3, pp. 929-964 | DOI | MR

[31] Hani, Z.; Pausader, B.; Tzvetkov, N.; Visciglia, N. Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi, Volume 3 (2015), e4, 63 pages | MR | DOI

[32] Hayashi, N.; Naumkin, P. I. Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998) no. 2, pp. 369-389 | DOI | MR

[33] Hrabski, A.; Pan, Y.; Staffilani, G.; Wilson, B. Energy transfer for solutions to the nonlinear Schrödinger equation on irrational tori (2021) | arXiv

[34] Kadomtsev, B. B.; Petviashvili, V. I. On the Stability of Solitary Waves in Weakly Dispersing Media, Sov. Phys., Dokl., Volume 15 (1970), pp. 539-541

[35] Kato, J.; Pusateri, F. G. A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011) no. 9-10, pp. 923-940 | MR

[36] Kuksin, S.; Pöschel, J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), Volume 143 (1996) no. 1, pp. 149-179 | DOI | Zbl

[37] Lochak, P. Arnold diffusion; a compendium of remarks and questions, Hamiltonian systems with three or more degrees of freedom. Proceedings of the NATO Advanced Study Institute, S’Agaró, Spain, June 19–30, 1995, Kluwer Academic Publishers, 1999, pp. 168-183 | Zbl

[38] Nekhoroshev, N. N. An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | DOI | Zbl

[39] Oh, T.; Sosoe, P.; Tzvetkov, N. An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. Polytech., Math., Volume 5 (2018), pp. 793-841 | DOI | Zbl | MR | Numdam

[40] Rocha, V. V. Da Modified scattering and beating effect for coupled Schrödinger systems on product spaces with small initial data, Trans. Am. Math. Soc., Volume 371 (2019) no. 7, pp. 4743-4768 | DOI | MR

[41] Sogge, C. D. Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65 | DOI | Zbl | MR

[42] Staffilani, G.; Wilson, B. Stability of the cubic nonlinear Schrodinger equation on an irrational torus, SIAM J. Math. Anal., Volume 52 (2020) no. 2, pp. 1318-1342 | DOI | Zbl | MR

[43] Xu, H. Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., Volume 286 (2017) no. 1-2, pp. 443-489 | DOI | MR

Cité par Sources :