Reprenant l’argument classique pour un Lemme d’Egorov en temps long, il s’avère que le temps d’Ehrenfest prend la forme , au lieu du temps communément admis.
The long time Egorov lemma concerns the Heisenberg propagation of observables. It is usually considered to be valid in the range . After careful inspection of the proof, it turns out to hold in the larger range . This applies to operators with no particular dynamical assumption or geometric structure.
@incollection{JEDP_2024____A2_0,
author = {Guedes Bonthonneau, Yannick},
title = {Le lemme {d{\textquoteright}Egorov} et $2/3$},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
note = {talk:2},
pages = {1--10},
year = {2024},
publisher = {R\'eseau th\'ematique AEDP du CNRS},
doi = {10.5802/jedp.683},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/jedp.683/}
}
TY - JOUR AU - Guedes Bonthonneau, Yannick TI - Le lemme d’Egorov et $2/3$ JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2024 SP - 1 EP - 10 PB - Réseau thématique AEDP du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.683/ DO - 10.5802/jedp.683 LA - fr ID - JEDP_2024____A2_0 ER -
Guedes Bonthonneau, Yannick. Le lemme d’Egorov et $2/3$. Journées équations aux dérivées partielles (2024), Exposé no. 2, 10 p.. doi: 10.5802/jedp.683
[1] estimates for Weyl quantization, J. Funct. Anal., Volume 165 (1999) no. 1, pp. 173-204 | DOI | Zbl | MR
[2] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002) no. 2, pp. 223-252 | DOI | Zbl | MR
[3] Semiclassical measures on hyperbolic surfaces have full support, Acta Math., Volume 220 (2018) no. 2, pp. 297-339 | DOI | MR
[4] Über kanonische Transformationen von Pseudodifferentialoperatoren, Usp. Mat. Nauk, Volume 24 (1969) no. 5(149), pp. 235-236 | Zbl
[5] Classical-Quantum correspondence in Lindblad evolution (2024) | arXiv
[6] Pseudo-differential operators of type 1,1, Commun. Partial Differ. Equations, Volume 13 (1988) no. 9, pp. 1085-1111 | DOI | Zbl
[7] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | Zbl | MR
[8] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | Zbl | DOI | MR
Cité par Sources :





