[Multifractalité et des tourbillons filamentaires polygonaux]
In this proceedings article we survey the results in [5] and their motivation, as presented at the 50th Journées Équations aux dérivées partielles 2024. With the aim of quantifying turbulent behaviors of vortex filaments, we study the multifractality of a family of generalized Riemann’s non-differentiable functions. These functions represent, in a certain limit, the trajectory of regular polygonal vortex filaments that evolve according to the binormal flow, the classical model for vortex filaments dynamics. We explain how we determined their spectrum of singularities through a careful design of Diophantine sets, which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.
Dans cet acte de conférence nous passons en revue les résultats de [5] et leur motivation, tels qu’ils ont été présentés au 50e Journées Équations aux dérivées partielles 2024. Dans le but de quantifier les comportements turbulents des filaments tourbillonnaires, nous étudions la multifractalité d’une famille de fonctions non différentiables de Riemann généralisées. Ces fonctions représentent, dans une certaine limite, la trajectoire de filaments tourbillonaires polygonaux réguliers qui évoluent selon le flot binormal, le modèle classique pour la dynamique des tourbillons filamentaires. Nous expliquons comment nous avons déterminé pour certaines de ces fonctions le spectre des singularités. La preuve repose sur une construction d’ensembles diophantiens que nous étudions en utilisant le théorème de Duffin–Schaeffer et le principe de transfert de masse.
Keywords: Vortex filaments, multifractality, Riemann’s non-differentiable function, Diophantine approximation.
Banica, Valeria  1 ; Eceizabarrena, Daniel  2 ; Nahmod, Andrea R.  3 ; Vega, Luis  4
@incollection{JEDP_2024____A1_0,
author = {Banica, Valeria and Eceizabarrena, Daniel and Nahmod, Andrea R. and Vega, Luis},
title = {Multifractality and polygonal vortex filaments},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
note = {talk:1},
pages = {1--13},
year = {2024},
publisher = {R\'eseau th\'ematique AEDP du CNRS},
doi = {10.5802/jedp.682},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.682/}
}
TY - JOUR AU - Banica, Valeria AU - Eceizabarrena, Daniel AU - Nahmod, Andrea R. AU - Vega, Luis TI - Multifractality and polygonal vortex filaments JO - Journées équations aux dérivées partielles N1 - talk:1 PY - 2024 SP - 1 EP - 13 PB - Réseau thématique AEDP du CNRS UR - https://www.numdam.org/articles/10.5802/jedp.682/ DO - 10.5802/jedp.682 LA - en ID - JEDP_2024____A1_0 ER -
%0 Journal Article %A Banica, Valeria %A Eceizabarrena, Daniel %A Nahmod, Andrea R. %A Vega, Luis %T Multifractality and polygonal vortex filaments %J Journées équations aux dérivées partielles %Z talk:1 %D 2024 %P 1-13 %I Réseau thématique AEDP du CNRS %U https://www.numdam.org/articles/10.5802/jedp.682/ %R 10.5802/jedp.682 %G en %F JEDP_2024____A1_0
Banica, Valeria; Eceizabarrena, Daniel; Nahmod, Andrea R.; Vega, Luis. Multifractality and polygonal vortex filaments. Journées équations aux dérivées partielles (2024), Exposé no. 1, 13 p.. doi: 10.5802/jedp.682
[1] High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., Volume 140 (1984), pp. 63-89 | DOI
[2] A Linear Stochastic Model of Turbulent Cascades and Fractional Fields (2023) (to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.) | arXiv
[3] Dynamical fractional and multifractal fields, J. Stat. Phys., Volume 186 (2022) no. 1, 15, 35 pages | DOI | Zbl | MR
[4] L’analyse multifractale des signaux, Images des Mathématiques, CNRS (2004)
[5] Multifractality and intermittency in the limit evolution of polygonal vortex filaments, Math. Ann., Volume 391 (2025), pp. 2837-2899 | DOI | MR
[6] Evolution of polygonal lines by the binormal flow, Ann. PDE, Volume 6 (2020) no. 1, 6, 53 pages | DOI | Zbl | MR
[7] Riemann’s non-differentiable function and the binormal curvature flow, Arch. Ration. Mech. Anal., Volume 244 (2022) no. 2, pp. 501-540 | DOI | MR
[8] Unbounded growth of the energy density associated to the Schrödinger map and the binormal flow, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 39 (2022) no. 4, pp. 927-946 | DOI | Zbl | MR
[9] New conservation laws and energy cascade for 1d cubic NLS and the Schrödinger map, Vietnam J. Math., Volume 52 (2024) no. 4, pp. 985-999 | DOI | MR
[10] The Frisch–Parisi conjecture. I: Prescribed multifractal behavior, and a partial solution, J. Math. Pures Appl. (9), Volume 175 (2023), pp. 76-108 | DOI | MR
[11] The Frisch–Parisi conjecture. II: Besov spaces in multifractal environment, and a full solution, J. Math. Pures Appl. (9), Volume 175 (2023), pp. 281-329 | DOI | Zbl | MR
[12] Vortex filament solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 76 (2023) no. 4, pp. 685-787 | DOI | MR
[13] A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), Volume 164 (2006) no. 3, pp. 971-992 | DOI | MR
[14] Intermittency of Riemann’s non-differentiable function through the fourth-order flatness, J. Math. Phys., Volume 62 (2021) no. 9, 093101, 14 pages | DOI | MR
[15] The pointwise behavior of Riemann’s function, J. Fractal Geom., Volume 10 (2023) no. 3-4, pp. 333-349 | DOI | MR
[16] Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations, Math. Ann., Volume 388 (2024), pp. 2627-2669 | MR
[17] Multifractal behavior of polynomial Fourier series, Adv. Math., Volume 250 (2014), pp. 1-34 | DOI | MR
[18] A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows, C. R. Phys., Volume 13 (2012) no. 9-10, pp. 899-928 | DOI
[19] Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque, Rend. Circ. Mat. Palermo, Volume 22 (1906), pp. 117-135 | DOI
[20] Travelling helices and the vortex filament conjecture in the incompressible Euler equations, Calc. Var. Partial Differ. Equ., Volume 61 (2022) no. 4, 119, 30 pages | DOI | MR
[21] Dynamics of helical vortex filaments in non viscous incompressible flows (2024) | arXiv
[22] Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | MR
[23] Geometric differentiability of Riemann’s non-differentiable function, Adv. Math., Volume 366 (2020), 107091, 39 pages | DOI | MR
[24] On the Hausdorff dimension of Riemann’s non-differentiable function, Trans. Am. Math. Soc., Volume 374 (2021) no. 11, pp. 7679-7713 | DOI | MR
[25] An analytical study of flatness and intermittency through Riemann’s nondifferentiable functions, SIAM J. Math. Anal., Volume 54 (2022) no. 3, pp. 3575-3608 | DOI | MR
[26] Evolution of viscous vortex filaments and desingularization of the Biot–Savart integral (2023) | arXiv
[27] Vanishing viscosity limit for axisymmetric vortex rings, Invent. Math., Volume 237 (2024) no. 1, pp. 275-348 | DOI | MR
[28] The differentiability of the Riemann function at certain rational multiples of , Am. J. Math., Volume 92 (1970), pp. 33-55 | DOI | MR
[29] More on the differentiability of the Riemann function, Am. J. Math., Volume 93 (1971), pp. 33-41 | DOI | MR
[30] Dynamics of coherent structures and transition to turbulence in free square jets, Phys. Fluids, Volume 8 (1996) no. 5, pp. 1237-1251 | DOI | MR
[31] Formation of singularities and self-similar vortex motion under the localized induction approximation, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 927-968 | DOI | MR
[32] Weierstrass’s non-differentiable function, Trans. Am. Math. Soc., Volume 17 (1916) no. 3, pp. 301-325 | DOI | MR
[33] A soliton on a vortex filament, J. Fluid Mech., Volume 51 (1972), pp. 477-485 | DOI | Zbl | MR
[34] Evolution of Vortex Filament Equation for a regular M-polygon and a circle (comparison), https://www.youtube.com/watch?v=bwbpKvqGk-o, 2015
[35] On the evolution of the vortex filament equation for regular -polygons with nonzero torsion, SIAM J. Appl. Math., Volume 80 (2020) no. 2, pp. 1034-1056 | DOI | Zbl | MR
[36] Vortex filament equation for a regular polygon, Nonlinearity, Volume 27 (2014) no. 12, pp. 3031-3057 | DOI | MR
[37] The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460 | DOI | MR
[38] On the vortex filament conjecture for Euler flows, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 1, pp. 135-172 | DOI | MR
[39] On the motion of a curve by its binormal curvature, J. Eur. Math. Soc., Volume 17 (2015) no. 6, pp. 1487-1515 | DOI | MR
[40] Does a quantum particle know the time?, Emerging applications of number theory (Minneapolis, MN, 1996) (The IMA Volumes in Mathematics and its Applications), Volume 109, Springer, 1999, pp. 355-371 | DOI | MR
[41] The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space, Osaka J. Math., Volume 34 (1997) no. 1, pp. 199-214 | Zbl | MR
[42] On the Duffin–Schaeffer conjecture, Ann. Math. (2), Volume 192 (2020) no. 1, pp. 251-307 | DOI | MR
[43] Local -regularity of Riemann’s Fourier series, Ann. Inst. Fourier, Volume 67 (2017) no. 5, pp. 2237-2264 | DOI | MR
[44] Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., Volume 289 (2018) no. 1-2, pp. 223-266 | DOI | MR
[45] A Study of the Vortical Structures of Noncircular Jets, Trans. Jpn. Soc. Mech. Eng. Ser. B, Volume 55 (1989) no. 514, pp. 1542-1545 | DOI
[46] Attractors for two-dimensional waves with homogeneous Hamiltonians of degree 0, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 421-462 | DOI | Zbl | MR
Cité par Sources :





