Multifractality and polygonal vortex filaments
[Multifractalité et des tourbillons filamentaires polygonaux]
Journées équations aux dérivées partielles (2024), Exposé no. 1, 13 p.

In this proceedings article we survey the results in [5] and their motivation, as presented at the 50th Journées Équations aux dérivées partielles 2024. With the aim of quantifying turbulent behaviors of vortex filaments, we study the multifractality of a family of generalized Riemann’s non-differentiable functions. These functions represent, in a certain limit, the trajectory of regular polygonal vortex filaments that evolve according to the binormal flow, the classical model for vortex filaments dynamics. We explain how we determined their spectrum of singularities through a careful design of Diophantine sets, which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.

Dans cet acte de conférence nous passons en revue les résultats de [5] et leur motivation, tels qu’ils ont été présentés au 50e Journées Équations aux dérivées partielles 2024. Dans le but de quantifier les comportements turbulents des filaments tourbillonnaires, nous étudions la multifractalité d’une famille de fonctions non différentiables de Riemann généralisées. Ces fonctions représentent, dans une certaine limite, la trajectoire de filaments tourbillonaires polygonaux réguliers qui évoluent selon le flot binormal, le modèle classique pour la dynamique des tourbillons filamentaires. Nous expliquons comment nous avons déterminé pour certaines de ces fonctions le spectre des singularités. La preuve repose sur une construction d’ensembles diophantiens que nous étudions en utilisant le théorème de Duffin–Schaeffer et le principe de transfert de masse.

Publié le :
DOI : 10.5802/jedp.682
Classification : 11J82, 11J83, 26A27, 28A78, 42A16, 76F99
Keywords: Vortex filaments, multifractality, Riemann’s non-differentiable function, Diophantine approximation.

Banica, Valeria  1   ; Eceizabarrena, Daniel  2   ; Nahmod, Andrea R.  3   ; Vega, Luis  4

1 Laboratoire Jacques-Louis Lions Sorbonne Université 4 place Jussieu 75005 Paris France
2 BCAM - Basque Center for Applied Mathematics Alameda de Mazarredo 14 48009 Bilbao Spain
3 Department of Mathematics and Statistics University of Massachusetts Amherst 710 N Pleasant St, Amherst, MA 01003, USA
4 Department of Mathematics University of Basque Country Apdo 644, 48080 Bilbao Spain
@incollection{JEDP_2024____A1_0,
     author = {Banica, Valeria and Eceizabarrena, Daniel and Nahmod, Andrea R. and Vega, Luis},
     title = {Multifractality and polygonal vortex filaments},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:1},
     pages = {1--13},
     year = {2024},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.682},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.682/}
}
TY  - JOUR
AU  - Banica, Valeria
AU  - Eceizabarrena, Daniel
AU  - Nahmod, Andrea R.
AU  - Vega, Luis
TI  - Multifractality and polygonal vortex filaments
JO  - Journées équations aux dérivées partielles
N1  - talk:1
PY  - 2024
SP  - 1
EP  - 13
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.682/
DO  - 10.5802/jedp.682
LA  - en
ID  - JEDP_2024____A1_0
ER  - 
%0 Journal Article
%A Banica, Valeria
%A Eceizabarrena, Daniel
%A Nahmod, Andrea R.
%A Vega, Luis
%T Multifractality and polygonal vortex filaments
%J Journées équations aux dérivées partielles
%Z talk:1
%D 2024
%P 1-13
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.682/
%R 10.5802/jedp.682
%G en
%F JEDP_2024____A1_0
Banica, Valeria; Eceizabarrena, Daniel; Nahmod, Andrea R.; Vega, Luis. Multifractality and polygonal vortex filaments. Journées équations aux dérivées partielles (2024), Exposé no. 1, 13 p.. doi: 10.5802/jedp.682

[1] Anselmet, Fabien; Gagne, Yves; Hopfinger, Emil J.; Antonia, Robert A. High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., Volume 140 (1984), pp. 63-89 | DOI

[2] Apolinário, Gabriel B.; Beck, Geoffrey; Chevillard, Laurent; Gallagher, Isabelle; Grande, Ricardo A Linear Stochastic Model of Turbulent Cascades and Fractional Fields (2023) (to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.) | arXiv

[3] Apolinário, Gabriel B.; Chevillard, Laurent; Mourrat, Jean-Christophe Dynamical fractional and multifractal fields, J. Stat. Phys., Volume 186 (2022) no. 1, 15, 35 pages | DOI | Zbl | MR

[4] Arneodo, Alain; Jaffard, Stéphane L’analyse multifractale des signaux, Images des Mathématiques, CNRS (2004)

[5] Banica, Valeria; Eceizabarrena, Daniel; Nahmod, Andrea; Vega, Luis Multifractality and intermittency in the limit evolution of polygonal vortex filaments, Math. Ann., Volume 391 (2025), pp. 2837-2899 | DOI | MR

[6] Banica, Valeria; Vega, Luis Evolution of polygonal lines by the binormal flow, Ann. PDE, Volume 6 (2020) no. 1, 6, 53 pages | DOI | Zbl | MR

[7] Banica, Valeria; Vega, Luis Riemann’s non-differentiable function and the binormal curvature flow, Arch. Ration. Mech. Anal., Volume 244 (2022) no. 2, pp. 501-540 | DOI | MR

[8] Banica, Valeria; Vega, Luis Unbounded growth of the energy density associated to the Schrödinger map and the binormal flow, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 39 (2022) no. 4, pp. 927-946 | DOI | Zbl | MR

[9] Banica, Valeria; Vega, Luis New conservation laws and energy cascade for 1d cubic NLS and the Schrödinger map, Vietnam J. Math., Volume 52 (2024) no. 4, pp. 985-999 | DOI | MR

[10] Barral, Julien; Seuret, Stéphane The Frisch–Parisi conjecture. I: Prescribed multifractal behavior, and a partial solution, J. Math. Pures Appl. (9), Volume 175 (2023), pp. 76-108 | DOI | MR

[11] Barral, Julien; Seuret, Stéphane The Frisch–Parisi conjecture. II: Besov spaces in multifractal environment, and a full solution, J. Math. Pures Appl. (9), Volume 175 (2023), pp. 281-329 | DOI | Zbl | MR

[12] Bedrossian, Jacob; Germain, Pierre; Harrop-Griffiths, Benjamin Vortex filament solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 76 (2023) no. 4, pp. 685-787 | DOI | MR

[13] Beresnevich, Victor; Velani, Sanju A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), Volume 164 (2006) no. 3, pp. 971-992 | DOI | MR

[14] Boritchev, Alexandre; Eceizabarrena, Daniel; Vilaça Da Rocha, Victor Intermittency of Riemann’s non-differentiable function through the fourth-order flatness, J. Math. Phys., Volume 62 (2021) no. 9, 093101, 14 pages | DOI | MR

[15] Broucke, Frederik; Vindas, Jasson The pointwise behavior of Riemann’s function, J. Fractal Geom., Volume 10 (2023) no. 3-4, pp. 333-349 | DOI | MR

[16] Cao, Daomin; Wan, Jie Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations, Math. Ann., Volume 388 (2024), pp. 2627-2669 | MR

[17] Chamizo, Fernando; Ubis, Adrián Multifractal behavior of polynomial Fourier series, Adv. Math., Volume 250 (2014), pp. 1-34 | DOI | MR

[18] Chevillard, Laurent; Castaing, Bernard; Arneodo, Alain; Lévêque, Emmanuel; Pinton, Jean-François; Roux, Stéphane G. A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows, C. R. Phys., Volume 13 (2012) no. 9-10, pp. 899-928 | DOI

[19] Da Rios, Luigi Sante Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque, Rend. Circ. Mat. Palermo, Volume 22 (1906), pp. 117-135 | DOI

[20] Dávila, Juan; del Pino, Manuel; Musso, Monica; Wei, Juncheng Travelling helices and the vortex filament conjecture in the incompressible Euler equations, Calc. Var. Partial Differ. Equ., Volume 61 (2022) no. 4, 119, 30 pages | DOI | MR

[21] Donati, Martin; Lacave, Christophe; Miot, Evelyne Dynamics of helical vortex filaments in non viscous incompressible flows (2024) | arXiv

[22] Duffin, Richard J.; Schaeffer, Albert C. Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | MR

[23] Eceizabarrena, Daniel Geometric differentiability of Riemann’s non-differentiable function, Adv. Math., Volume 366 (2020), 107091, 39 pages | DOI | MR

[24] Eceizabarrena, Daniel On the Hausdorff dimension of Riemann’s non-differentiable function, Trans. Am. Math. Soc., Volume 374 (2021) no. 11, pp. 7679-7713 | DOI | MR

[25] Eceizabarrena, Daniel; Vilaça Da Rocha, Victor An analytical study of flatness and intermittency through Riemann’s nondifferentiable functions, SIAM J. Math. Anal., Volume 54 (2022) no. 3, pp. 3575-3608 | DOI | MR

[26] Fontelos, Marco Antonio; Vega, Luis Evolution of viscous vortex filaments and desingularization of the Biot–Savart integral (2023) | arXiv

[27] Gallay, Thierry; Sverák, Vladimír Vanishing viscosity limit for axisymmetric vortex rings, Invent. Math., Volume 237 (2024) no. 1, pp. 275-348 | DOI | MR

[28] Gerver, Joseph The differentiability of the Riemann function at certain rational multiples of π, Am. J. Math., Volume 92 (1970), pp. 33-55 | DOI | MR

[29] Gerver, Joseph More on the differentiability of the Riemann function, Am. J. Math., Volume 93 (1971), pp. 33-41 | DOI | MR

[30] Grinstein, Fernando F.; De Vore, Carl R. Dynamics of coherent structures and transition to turbulence in free square jets, Phys. Fluids, Volume 8 (1996) no. 5, pp. 1237-1251 | DOI | MR

[31] Gutiérrez, Susana; Rivas, Judith; Vega, Luis Formation of singularities and self-similar vortex motion under the localized induction approximation, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 927-968 | DOI | MR

[32] Hardy, Godfrey H. Weierstrass’s non-differentiable function, Trans. Am. Math. Soc., Volume 17 (1916) no. 3, pp. 301-325 | DOI | MR

[33] Hasimoto, Hidenori A soliton on a vortex filament, J. Fluid Mech., Volume 51 (1972), pp. 477-485 | DOI | Zbl | MR

[34] de la Hoz, Francisco; Kumar, Sandeep; Vega, Luis Evolution of Vortex Filament Equation for a regular M-polygon and a circle (comparison), https://www.youtube.com/watch?v=bwbpKvqGk-o, 2015

[35] de la Hoz, Francisco; Kumar, Sandeep; Vega, Luis On the evolution of the vortex filament equation for regular M-polygons with nonzero torsion, SIAM J. Appl. Math., Volume 80 (2020) no. 2, pp. 1034-1056 | DOI | Zbl | MR

[36] de la Hoz, Francisco; Vega, Luis Vortex filament equation for a regular polygon, Nonlinearity, Volume 27 (2014) no. 12, pp. 3031-3057 | DOI | MR

[37] Jaffard, Stéphane The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460 | DOI | MR

[38] Jerrard, Robert L.; Seis, Christian On the vortex filament conjecture for Euler flows, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 1, pp. 135-172 | DOI | MR

[39] Jerrard, Robert L.; Smets, Didier On the motion of a curve by its binormal curvature, J. Eur. Math. Soc., Volume 17 (2015) no. 6, pp. 1487-1515 | DOI | MR

[40] Kapitanski, Lev; Rodnianski, Igor Does a quantum particle know the time?, Emerging applications of number theory (Minneapolis, MN, 1996) (The IMA Volumes in Mathematics and its Applications), Volume 109, Springer, 1999, pp. 355-371 | DOI | MR

[41] Koiso, Norihito The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space, Osaka J. Math., Volume 34 (1997) no. 1, pp. 199-214 | Zbl | MR

[42] Koukoulopoulos, Dimitris; Maynard, James On the Duffin–Schaeffer conjecture, Ann. Math. (2), Volume 192 (2020) no. 1, pp. 251-307 | DOI | MR

[43] Seuret, Stéphane; Ubis, Adrián Local L 2 -regularity of Riemann’s Fourier series, Ann. Inst. Fourier, Volume 67 (2017) no. 5, pp. 2237-2264 | DOI | MR

[44] Shen, Weixiao Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., Volume 289 (2018) no. 1-2, pp. 223-266 | DOI | MR

[45] Todoya, Kuniaki; Hussain, Fazle A Study of the Vortical Structures of Noncircular Jets, Trans. Jpn. Soc. Mech. Eng. Ser. B, Volume 55 (1989) no. 514, pp. 1542-1545 | DOI

[46] Colin de Verdière, Yves; Saint-Raymond, Laure Attractors for two-dimensional waves with homogeneous Hamiltonians of degree 0, Commun. Pure Appl. Math., Volume 73 (2020) no. 2, pp. 421-462 | DOI | Zbl | MR

Cité par Sources :