Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems
Journées équations aux dérivées partielles (2023), Talk no. 4, 13 p.

Shrinkage of large particles, either through depolymerisation (i.e. progressive shortening) or through fragmentation (breakage into smaller pieces) may be modelled by discrete equations, of Becker–Döring type, or by continuous ones. In this note, we review two kinds of inverse problems: the first is the estimation of the initial size-distribution from moments measurements in a depolymerising system, in collaboration with Philippe Moireau and inspired by experiments carried out by Human Rezaei’s team; the second is the inference of fragmentation characteristics from size distribution samples, in collaboration with Miguel Escobedo and Magali Tournus, based on biological questions and experiments of Wei-Feng Xue’s team.

Published online:
DOI: 10.5802/jedp.675
Classification: 35R30, 35A35, 35A23, 35C10, 35D30, 35R09, 35Q92, 92D25
Keywords: Depolymerisation system, observability inequality, Carleman inequalities, error estimates, Tikhonov regularisation, Moments methods, Measure-valued solutions, Fragmentation equation

Doumic, Marie 1

1 MERGE, CMAP, Inria, IP Paris, Ecole polytechnique, CNRS, 91128 Palaiseau cedex FRANCE
@incollection{JEDP_2023____A4_0,
     author = {Doumic, Marie},
     title = {Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:4},
     pages = {1--13},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.675},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.675/}
}
TY  - JOUR
AU  - Doumic, Marie
TI  - Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems
JO  - Journées équations aux dérivées partielles
N1  - talk:4
PY  - 2023
SP  - 1
EP  - 13
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.675/
DO  - 10.5802/jedp.675
LA  - en
ID  - JEDP_2023____A4_0
ER  - 
%0 Journal Article
%A Doumic, Marie
%T Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems
%J Journées équations aux dérivées partielles
%Z talk:4
%D 2023
%P 1-13
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.675/
%R 10.5802/jedp.675
%G en
%F JEDP_2023____A4_0
Doumic, Marie. Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems. Journées équations aux dérivées partielles (2023), Talk no. 4, 13 p.. doi: 10.5802/jedp.675

[1] Armiento, Aurora; Doumic, Marie; Moireau, Philippe; Rezaei, Human Estimation from Moments Measurements for Amyloid Depolymerisation, J. Theor. Biol., Volume 397 (2016), pp. 68-88 | Zbl | DOI | MR

[2] Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad’a; Doumic, Marie; Rezaei, Human The mechanism of monomer transfer between two structurally distinct PrP oligomers, PLoS ONE, Volume 12 (2017) no. 7, e0180538 | DOI

[3] Banks, H. T.; Doumic, Marie; Kruse, Carola; Prigent, Stephanie; Rezaei, Human Information content in data sets for a nucleated-polymerisation model, J. Biol. Dyn., Volume 9 (2015) no. 1, pp. 172-197 | DOI | Zbl | MR

[4] Bardos, Claude; Tartar, Luc Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Ration. Mech. Anal., Volume 50 (1973) no. 1, pp. 10-25 | Zbl | DOI | MR

[5] Beal, David M.; Tournus, Magali; Marchante, Ricardo; Purton, Tracey; Smith, David P.; Tuite, Mick F.; Doumic, Marie; Xue, Wei-Feng The division of amyloid fibrils, iScience, Volume 23 (2020) no. 9, 101512 | DOI

[6] Cañizo, José A; Gabriel, Pierre; Yoldas, Havva Spectral gap for the growth-fragmentation equation via Harris’s theorem, SIAM J. Math. Anal., Volume 53 (2021) no. 5, pp. 5185-5214 | DOI | Zbl | MR

[7] Collet, Jean-François; Goudon, Thierry; Poupaud, Frédéric; Vasseur, Alexis The Becker–Döring system and its Lifshitz–Slyozov limit, SIAM J. Appl. Math., Volume 62 (2002) no. 5, pp. 1488-1500 | Zbl

[8] Cornilleau, Pierre; Guerrero, Sergio Controllability and observability of an artificial advection-diffusion problem, Math. Control Signals Syst., Volume 24 (2012) no. 3, pp. 265-294 | DOI | Zbl | MR

[9] Coron, Jean-Michel; Guerrero, Sergio Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymptotic Anal., Volume 44 (2005) no. 3-4, pp. 237-257 | DOI | MR

[10] Della Valle, Cécile; Doumic, Marie; Moireau, Philippe State estimation of a backward transport equation by moment measurements (working paper)

[11] Doumic, Marie; Escobedo, Miguel; Tournus, Magali Estimating the division rate and kernel in the fragmentation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 7, pp. 1847-1884 | DOI | Numdam | Zbl | MR

[12] Doumic, Marie; Escobedo, Miguel; Tournus, Magali An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation (2024) (https://hal.science/hal-03494439v2, to appear in Ann. Henri Lebesgue)

[13] Doumic, Marie; Hoffmann, Marc; Reynaud-Bouret, Patricia; Rivoirard, Vincent Nonparametric estimation of the division rate of a size-structured population, SIAM J. Numer. Anal., Volume 50 (2012) no. 2, pp. 925-950 | DOI | Zbl | MR

[14] Doumic, Marie; Moireau, Philippe Asymptotic approaches in inverse problems for depolymerization estimation (working paper)

[15] Doumic, Marie; Perthame, Benoît; Zubelli, Jorge P. Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., Volume 25 (2009) no. 4, 045008, 25 pages | Zbl | MR

[16] Escobedo, Miguel; Mischler, Stéphane; Rodriguez Ricard, Mariano On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | Numdam | Zbl | MR

[17] Fournier, Nicolas; Perthame, Benoît A nonexpanding transport distance for some structured equations, SIAM J. Math. Anal., Volume 53 (2021) no. 6, pp. 6847-6872 | DOI | Zbl | MR

[18] Halpern, Laurence Artificial boundary conditions for the linear advection diffusion equation, Math. Comput., Volume 46 (1986), pp. 425-438 | DOI | Zbl | MR

[19] Melzak, Z. Alexander A scalar transport equation, Trans. Am. Math. Soc., Volume 85 (1957), pp. 547-560 | DOI | Zbl | MR

[20] Michel, Philippe; Mischler, Stéphane; Perthame, Benoît General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260 | DOI | Zbl | MR

[21] Perthame, Benoît; Zubelli, Jorge P. On the inverse problem for a size-structured population model, Inverse Probl., Volume 23 (2007) no. 3, pp. 1037-1052 | DOI | Zbl | MR

[22] Phung, Kim-Dang Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., Volume 295 (2004) no. 2, pp. 527-538 | DOI | MR

[23] Prigent, Stephanie; Ballesta, Annabelle; Charles, Frédérique; Lenuzza, Natacha; Gabriel, Pierre; Tine, Léon Matar; Rezaei, Human; Doumic, Marie An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation, PLoS ONE, Volume 7 (2012) no. 11, e43273 | DOI

[24] Thi Minh Nhat Vo Construction of a control and reconstruction of a source for linear and nonlinear heat equations, Ph. D. Thesis, Université d’Orléans (2018)

[25] Tournus, Magali; Escobedo, Miguel; Xue, Wei-Feng; Doumic, Marie Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation, PLoS Comput. Biol., Volume 17 (2021) no. 9, e1008964 | DOI

[26] Tsybakov, Alexandre B. Nonparametric estimators, Introduction to Nonparametric Estimation (Springer Series in Statistics), Springer, 2009, pp. 1-76 | MR

[27] Xue, Wei-Feng; Radford, Sheena E. An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior, Biophys. J., Volume 105 (2013) no. 12, pp. 2811-2819 | DOI

Cited by Sources: