Modified scattering for the small data solutions to the Vlasov–Maxwell system
Journées équations aux dérivées partielles (2023), Talk no. 2, 15 p.

In this note, we first present the scattering problem for the Vlasov–Maxwell system. Then, by studying the linearised system, we explain why the distribution function merely exhibits, in general, a modified scattering dynamic.

Published online:
DOI: 10.5802/jedp.673

Bigorgne, Léo 1

1 Institut de recherche mathématique de Rennes Université de Rennes - Campus Beaulieu 35 700 Rennes France
@incollection{JEDP_2023____A2_0,
     author = {Bigorgne, L\'eo},
     title = {Modified scattering for the small data solutions to the {Vlasov{\textendash}Maxwell} system},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:2},
     pages = {1--15},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.673},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.673/}
}
TY  - JOUR
AU  - Bigorgne, Léo
TI  - Modified scattering for the small data solutions to the Vlasov–Maxwell system
JO  - Journées équations aux dérivées partielles
N1  - talk:2
PY  - 2023
SP  - 1
EP  - 15
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.673/
DO  - 10.5802/jedp.673
LA  - en
ID  - JEDP_2023____A2_0
ER  - 
%0 Journal Article
%A Bigorgne, Léo
%T Modified scattering for the small data solutions to the Vlasov–Maxwell system
%J Journées équations aux dérivées partielles
%Z talk:2
%D 2023
%P 1-15
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.673/
%R 10.5802/jedp.673
%G en
%F JEDP_2023____A2_0
Bigorgne, Léo. Modified scattering for the small data solutions to the Vlasov–Maxwell system. Journées équations aux dérivées partielles (2023), Talk no. 2, 15 p.. doi: 10.5802/jedp.673

[1] Bardos, Claude; Degond, Pierre Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | MR | Numdam | Zbl

[2] Bigorgne, Léo Sharp asymptotic behavior of solutions of the 3d Vlasov–Maxwell system with small data, Commun. Math. Phys., Volume 376 (2020) no. 2, pp. 893-992 | DOI | MR | Zbl

[3] Bigorgne, Léo Sharp asymptotics for the solutions of the three-dimensional massless Vlasov–Maxwell system with small data, Ann. Henri Poincaré, Volume 22 (2021) no. 1, pp. 219-273 | DOI | MR | Zbl

[4] Bigorgne, Léo Global existence and modified scattering for the small data solutions to the Vlasov–Maxwell system (2022) (To appear in Anal. PDE) | arXiv

[5] Bigorgne, Léo Scattering map for the Vlasov–Maxwell system around source-free electromagnetic fields (2023) | arXiv

[6] Bigorgne, Léo; Ruiz, Anibal Velozo; Ruiz, Renato Velozo Modified scattering of small data solutions to the Vlasov–Poisson system with a trapping potential (2023) | arXiv

[7] Brigouleix, Nicolas; Han-Kwan, Daniel The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 2, pp. 545-594 | DOI | MR | Numdam | Zbl

[8] Choi, Sun-Ho; Ha, Seung-Yeal Asymptotic behavior of the nonlinear Vlasov equation with a self-consistent force, SIAM J. Math. Anal., Volume 43 (2011) no. 5, pp. 2050-2077 | DOI | MR | Zbl

[9] Choi, Sun-Ho; Kwon, Soonsik Modified scattering for the Vlasov–Poisson system, Nonlinearity, Volume 29 (2016) no. 9, pp. 2755-2774 | DOI | MR | Zbl

[10] DiPerna, Ronald J.; Lions, Pierre-Louis Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl

[11] Flynn, Patrick; Ouyang, Zhimeng; Pausader, Benoit; Widmayer, Klaus Scattering map for the Vlasov–Poisson system, Peking Math. J., Volume 6 (2023) no. 2, pp. 365-392 | DOI | MR | Zbl

[12] Glassey, Robert T. The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR

[13] Glassey, Robert T.; Schaeffer, Jack Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 | MR | DOI | Zbl

[14] Glassey, Robert T.; Schaeffer, Jack On the “one and one-half dimensional” relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 13 (1990) no. 2, pp. 169-179 | DOI | MR | Zbl

[15] Glassey, Robert T.; Schaeffer, Jack The “two and one-half-dimensional” relativistic Vlasov Maxwell system, Commun. Math. Phys., Volume 185 (1997) no. 2, pp. 257-284 | DOI | MR | Zbl

[16] Glassey, Robert T.; Schaeffer, Jack The relativistic Vlasov–Maxwell system in two space dimensions. I, II, Arch. Ration. Mech. Anal., Volume 141 (1998) no. 4, p. 331-354, 355–374 | DOI | MR | Zbl

[17] Glassey, Robert T.; Strauss, Walter A. Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl

[18] Glassey, Robert T.; Strauss, Walter A. Absence of shocks in an initially dilute collisionless plasma, Commun. Math. Phys., Volume 113 (1987) no. 2, pp. 191-208 | MR | DOI | Zbl

[19] Ionescu, Alexandru D.; Pausader, Benoit; Wang, Xuecheng; Widmayer, Klaus Nonlinear Landau damping for the Vlasov–Poisson system in 3 : the Poisson equilibrium (2022) | arXiv

[20] Ionescu, Alexandru D.; Pausader, Benoit; Wang, Xuecheng; Widmayer, Klaus On the Asymptotic Behavior of Solutions to the Vlasov–Poisson System, Int. Math. Res. Not. (2022) no. 12, pp. 8865-8889 | DOI | Zbl | MR

[21] Ionescu, Alexandru D.; Pausader, Benoit; Wang, Xuecheng; Widmayer, Klaus On the stability of homogeneous equilibria in the Vlasov–Poisson system on 3 , Class. Quant. Grav., Volume 40 (2023) no. 18, 185007, 32 pages | DOI | MR

[22] Lions, Pierre-Louis; Perthame, Benoit Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR

[23] Luk, Jonathan; Strain, Robert M. A new continuation criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | DOI | MR | Zbl

[24] Luk, Jonathan; Strain, Robert M. Strichartz estimates and moment bounds for the relativistic Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 1, pp. 445-552 | DOI | MR | Zbl

[25] Nguyen, Toan T. Landau damping and the survival threshold (2023) | arXiv

[26] Pankavich, Stephen Asymptotic dynamics of dispersive, collisionless plasmas, Commun. Math. Phys., Volume 391 (2022) no. 2, pp. 455-493 | DOI | MR | Zbl

[27] Pankavich, Stephen; Ben-Artzi, Jonathan Modified Scattering of Solutions to the Relativistic Vlasov–Maxwell System Inside the Light Cone (2023) | arXiv

[28] Pausader, Benoit; Widmayer, Klaus; Yang, Jiaqi Stability of a point charge for the repulsive Vlasov–Poisson system (2022) | arXiv

[29] Pfaffelmoser, Klaus Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl

[30] Reed, Michael; Simon, Barry Methods of modern mathematical physics. III. Scattering theory, Academic Press Inc., 1979, xv+463 pages | MR

[31] Rein, Gerhard Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 41-78 | MR | DOI | Zbl

[32] Rein, Gerhard Global weak solutions to the relativistic Vlasov–Maxwell system revisited, Commun. Math. Sci., Volume 2 (2004) no. 2, pp. 145-158 | MR | DOI | Zbl

[33] Schaeffer, Jack A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl

[34] Wang, Xuecheng Global solution of the 3D Relativistic Vlasov–Maxwell system for large data with cylindrical symmetry (2022) | arXiv

[35] Wang, Xuecheng Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov–Maxwell system, Commun. Math. Phys., Volume 389 (2022) no. 2, pp. 715-812 | DOI | MR | Zbl

[36] Wei, Dongyi; Yang, Shiwu On the 3D relativistic Vlasov–Maxwell system with large Maxwell field, Commun. Math. Phys., Volume 383 (2021) no. 3, pp. 2275-2307 | DOI | MR | Zbl

[37] Wollman, Stephen An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl

Cited by Sources: