I will explain basic concepts/problems of complex analysis in infinite dimensions, and survey the few approaches that are available to solve those problems.
@incollection{JEDP_1998____A8_0,
author = {Lempert, L\'aszl\'o},
title = {The {Cauchy-Riemann} equations in infinite dimensions},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {8},
pages = {1--8},
year = {1998},
publisher = {Universit\'e de Nantes},
doi = {10.5802/jedp.537},
mrnumber = {99k:46081},
zbl = {01808717},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.537/}
}
Lempert, László. The Cauchy-Riemann equations in infinite dimensions. Journées équations aux dérivées partielles (1998), article no. 8, 8 p.. doi: 10.5802/jedp.537
[C] Les équations de Cauchy-Riemann sur un espace de Hilbert manuscript
[D] Complex Analysis in Locally Convex Spaces North Holland Amsterdam 1981 | Zbl
[H] The ∂ equation with polynominal growth on a Hilbert space Duke Math. J. 40 1973 279-306 | MR | Zbl
[Hö] An Introduction to Complex Analysis in Several Variables 3rd edition North Holland Amsterdam 1990 | Zbl
[L1] The Dolbeault complex in infinite dimensions I J. Amer. Math. Soc., to appear | Zbl
[L2] The Dolbeault complex in infinite dimensions II manuscript
[L3] The Dolbeault complex in infinite dimensions III in preparation
[L4] Approximation de fonctions holomorphes d'un nombre infini de variables manuscript
[M] Analytic Sets in Locally Convex Spaces North Holland Amsterdam 1984
[NN] , Complex analytic coordinates in almost complex manifolds Ann. of Math. 65 1957 391-404 | MR | Zbl
[R] Le problème du ∂ sur un espace de Hilbert Bull. Soc. Math. Fr. 107 1979 225-240 | Numdam | MR | Zbl
Cité par Sources :





