@incollection{JEDP_1992____A8_0,
author = {Perthame, Beno{\^\i}t},
title = {Kinetic approach to systems of conservation laws},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {8},
pages = {1--13},
year = {1992},
publisher = {Ecole polytechnique},
doi = {10.5802/jedp.426},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jedp.426/}
}
Perthame, Benoît. Kinetic approach to systems of conservation laws. Journées équations aux dérivées partielles (1992), article no. 8, 13 p.. doi: 10.5802/jedp.426
[Ba] . Introduction aux problèmes hyperboliques. In CIME Lesson, LN 1047, Springer Verlag, Berlin. H. B. Da Veiga Editor. | MR | Zbl
[Br] , Résolution d'équations d'évolution quasilinéaires. J. Diff. Eq. 50(3), (1986), 375-390. | MR | Zbl
[Ce] . The Boltzmann Equation and its applications. Applied Math. Sc. 67, Springer Verlag, Berlin (1988). | MR | Zbl
[Ch] . The compensated compactness method and the system of isentropic gas dynamics. Preprint MSRI - 00527-91, Mathematical Sciences Research Institute, Berkeley (1990).
[DP] . Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal. 82 (1983) pp. 27-70. | MR | Zbl
[DLM] , , , Lp regularity of velocity averages. A Paraître dans Ann. IHP Anal. Non Lin., 1991. | Numdam | MR | Zbl
[GLPS] , , , , Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), (1988), 11°-125. | MR | Zbl
[K] , First order quasi-linear equations with several space variables. Math. USSR Sb. 10 (1970), 217-273.
[L] . Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF conference n° 11, SIAM, Philadelfia (1973). | MR | Zbl
[LP] , . Moments, averaging and dispersion lemmas. C.R. Ac. Sc. Paris (1992) to appear. | Zbl
[LPT1] , , , Kinetic formulation of scalar conservation laws. Note C.R.A.S. t. Série 1 (1991). | Zbl
[LPT2] . , . Kinetic formulation of isentropic gas dynamics in preparation. | Zbl
[P] , Higher moments for kinetic equations ; Applications to Vlasov-Poisson and Fokker-Planck Equations. Math. Methods in the Appl. Sc. 13(1990), 441-452. | MR | Zbl
[PT] , , A kinetic equation with kinetic entropy functions for scalar conservation laws. A paraître dans Comm. in Math. Phys. | Zbl
[S] , Shock waves and reaction diffusion equations. Springer-Verlag New York, Heidelberg-Berlin, (1982).
[T] , In Research notes in Mathematics, 39, Henriot-Watt Symp. Vol. 4 Pitman Press Boston, London (1975), 136-211. | MR | Zbl
Cité par Sources :





