Article de recherche - Géométrie et Topologie, Mécanique
Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
[Différentielle du tenseur de déformation en toute dimension et applications aux géodésiques quotient]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1847-1856

The polar decomposition X=WR, with XGL(n,), W𝒮 + (n), and R𝒪 n , suggests a right action of the orthogonal group 𝒪 n on the general linear group GL(n,). Equipped with the Frobenius metric, the 𝒪 n -principal bundle π:XGL(n,)X𝒪 n GL(n,)/𝒪 n becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section sπ in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space GL(n,)/𝒪 n .

La décomposition polaire X=WR, avec XGL(n,), W𝒮 + (n) et R𝒪 n , suggère une action à droite du groupe orthogonal 𝒪 n sur le groupe général linéaire GL(n,). Équipé de la métrique de Frobenius, le fibré 𝒪 n -principal π:XGL(n,)X𝒪 n GL(n,)/𝒪 n devient une submersion Riemannienne. Dans cet article, nous obtenons une expression pour la dérivée en toute dimension de son unique section symétrique sπ, en termes d’une solution d’une équation de Sylvester. Nous discutons comment résoudre ce type d’équation et vérifions que notre formule coïncide avec celles dérivées dans la littérature en basses dimensions. Nous appliquons notre résultat à la caractérisation des géodésiques de la métrique de Frobenius dans l’espace quotient GL(n,)/𝒪 n .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.692
Classification : 53A17, 53C22, 53C80, 15A24
Keywords: Polar Decomposition, stretch Tensor, quotient Geodesics
Mots-clés : Décomposition polaire, tenseur de déformation, géodésiques quotient

Bisson, Olivier  1   ; Pennec, Xavier  1

1 Université Côte d’Azur, INRIA, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1847_0,
     author = {Bisson, Olivier and Pennec, Xavier},
     title = {Differential of the {Stretch} {Tensor} for {Any} {Dimension} with {Applications} to {Quotient} {Geodesics}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1847--1856},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.692},
     zbl = {07949992},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.692/}
}
TY  - JOUR
AU  - Bisson, Olivier
AU  - Pennec, Xavier
TI  - Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1847
EP  - 1856
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.692/
DO  - 10.5802/crmath.692
LA  - en
ID  - CRMATH_2024__362_G12_1847_0
ER  - 
%0 Journal Article
%A Bisson, Olivier
%A Pennec, Xavier
%T Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
%J Comptes Rendus. Mathématique
%D 2024
%P 1847-1856
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.692/
%R 10.5802/crmath.692
%G en
%F CRMATH_2024__362_G12_1847_0
Bisson, Olivier; Pennec, Xavier. Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1847-1856. doi: 10.5802/crmath.692

[1] Bhatia, Rajendra; Jain, Tanvi; Lim, Yongdo On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., Volume 37 (2019) no. 2, pp. 165-191 | DOI | MR | Zbl

[2] Bhatia, Rajendra; Rosenthal, Peter How and why to solve the operator equation AX-XB=Y, Bull. Lond. Math. Soc., Volume 29 (1997) no. 1, pp. 1-21 | DOI | MR | Zbl

[3] Chen, Yi-Chao; Wheeler, Lewis Derivatives of the stretch and rotation tensors, J. Elasticity, Volume 32 (1993) no. 3, pp. 175-182 | DOI | MR | Zbl

[4] Feppon, Florian Jeremy Riemannian geometry of matrix manifolds for Lagrangian uncertainty quantification of stochastic fluid flows, Master thesis, Massachusetts Institute of Technology (2017)

[5] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques Riemannian geometry, Universitext, Springer, 1990, xiv+284 pages | DOI | MR | Zbl

[6] Gawlik, Evan S.; Leok, Melvin Iterative computation of the Fréchet derivative of the polar decomposition, SIAM J. Matrix Anal. Appl., Volume 38 (2017) no. 4, pp. 1354-1379 | DOI | MR | Zbl

[7] Guo, Zhong Heng Rates of stretch tensors, J. Elasticity, Volume 14 (1984) no. 3, pp. 263-267 | DOI | MR | Zbl

[8] Golub, Gene H.; Van Loan, Charles F. Matrix Computations, Johns Hopkins University Press, 2013 | MR | DOI | Zbl

[9] Hall, Brian Lie groups, Lie algebras, and representations, Graduate Texts in Mathematics, 222, Springer, 2015, xiv+449 pages (An elementary introduction) | DOI | MR | Zbl

[10] Hoger, Anne; Carlson, Donald E. On the derivative of the square root of a tensor and Guo’s rate theorems, J. Elasticity, Volume 14 (1984) no. 3, pp. 329-336 | DOI | MR | Zbl

[11] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl

[12] Massart, Estelle; Absil, P.-A. Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl., Volume 41 (2020) no. 1, pp. 171-198 | DOI | MR | Zbl

[13] Nash, Martyn P.; Panfilov, Alexander V. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., Volume 85 (2004) no. 2, pp. 501-522 | DOI

[14] Rosati, Luciano Derivatives and rates of the stretch and rotation tensors, J. Elasticity, Volume 56 (1999) no. 3, pp. 213-230 | DOI | MR | Zbl

Cité par Sources :