Article de recherche - Géométrie et Topologie, Théorie des groupes
Density of systoles of hyperbolic manifolds
[Densité de systoles de variétés hyperboliques]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1819-1824

We show that for each n2, the systoles of closed hyperbolic n-manifolds form a dense subset of (0,+). We also show that for any n2 and any Salem number λ, there is a closed arithmetic hyperbolic n-manifold of systole log(λ). In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in (0,+).

Nous démontrons que, pour tout n2, les systoles de variétés hyperboliques compactes sans bord de dimension n constituent une partie dense de ]0,+[. Nous démontrons de plus que, pour tout n2 et tout nombre de Salem λ, il existe une variété hyperbolique arithmétique compacte sans bord de dimension n et de systole log(λ). En particulier, la conjecture de Salem est vraie si et seulement si les systoles de variétés hyperboliques arithmétiques compactes sans bord d’une certaine dimension (de manière équivalente, de dimension quelconque) ne sont pas denses dans ]0,+[.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.689
Classification : 22E40, 11F06
Keywords: Geometric topology, hyperbolic manifolds, systoles, arithmetic groups
Mots-clés : Topologie géométrique, variétés hyperboliques, systoles, groupes arithmétiques

Douba, Sami  1   ; Huang, Junzhi  2

1 Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France
2 Department of Mathematics, Yale University, New Haven, CT 06511, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1819_0,
     author = {Douba, Sami and Huang, Junzhi},
     title = {Density of systoles of hyperbolic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1819--1824},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.689},
     zbl = {07949989},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.689/}
}
TY  - JOUR
AU  - Douba, Sami
AU  - Huang, Junzhi
TI  - Density of systoles of hyperbolic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1819
EP  - 1824
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.689/
DO  - 10.5802/crmath.689
LA  - en
ID  - CRMATH_2024__362_G12_1819_0
ER  - 
%0 Journal Article
%A Douba, Sami
%A Huang, Junzhi
%T Density of systoles of hyperbolic manifolds
%J Comptes Rendus. Mathématique
%D 2024
%P 1819-1824
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.689/
%R 10.5802/crmath.689
%G en
%F CRMATH_2024__362_G12_1819_0
Douba, Sami; Huang, Junzhi. Density of systoles of hyperbolic manifolds. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1819-1824. doi: 10.5802/crmath.689

[1] Agol, Ian Systoles of hyperbolic 4-manifolds (2006) (https://arxiv.org/abs/math/0612290)

[2] Agol, Ian; Long, Darren D.; Reid, Alan W. The Bianchi groups are separable on geometrically finite subgroups, Ann. Math., Volume 153 (2001) no. 3, pp. 599-621 | DOI | MR | Zbl

[3] Breuillard, Emmanuel; Deroin, Bertrand Salem numbers and the spectrum of hyperbolic surfaces, Int. Math. Res. Not., Volume 2020 (2020) no. 22, pp. 8234-8250 | DOI | MR | Zbl

[4] Bergeron, Nicolas Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, Enseign. Math., Volume 46 (2000) no. 1-2, pp. 109-137 | MR | Zbl

[5] Borel, Armand; Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. Math., Volume 75 (1962), pp. 485-535 | DOI | MR | Zbl

[6] Bergeron, Nicolas; Haglund, Frédéric; Wise, Daniel T. Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc., Volume 83 (2011) no. 2, pp. 431-448 | DOI | MR | Zbl

[7] Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Universitext, Springer, 1992, xiv+330 pages | DOI | MR | Zbl

[8] Belolipetsky, Mikhail V.; Thomson, Scott A. Systoles of hyperbolic manifolds, Algebr. Geom. Topol., Volume 11 (2011) no. 3, pp. 1455-1469 | DOI | MR | Zbl

[9] Cosac, Gregory; Dória, Cayo Closed geodesics on semi-arithmetic Riemann surfaces, Math. Res. Lett., Volume 29 (2022) no. 4, pp. 961-1001 | MR | Zbl | DOI

[10] Douba, Sami Systoles of hyperbolic hybrids (2023) (https://arxiv.org/abs/2309.16051)

[11] Emery, Vincent; Ratcliffe, John G.; Tschantz, Steven T. Salem numbers and arithmetic hyperbolic groups, Trans. Am. Math. Soc., Volume 372 (2019) no. 1, pp. 329-355 | DOI | MR | Zbl

[12] Fraczyk, Mikolaj; Pham, Lam L. Bottom of the length spectrum of arithmetic orbifolds, Trans. Am. Math. Soc., Volume 376 (2023) no. 7, pp. 4745-4764 | DOI | MR | Zbl

[13] Gelander, Tsachik Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | DOI | MR | Zbl

[14] Kravchuk, Petr; Mazáč, Dalimil; Pal, Sridip Automorphic spectra and the conformal bootstrap, Commun. Am. Math. Soc., Volume 4 (2024), pp. 1-63 | DOI | MR | Zbl

[15] Lehmer, Derrick H. Factorization of certain cyclotomic functions, Ann. Math., Volume 34 (1933) no. 3, pp. 461-479 | DOI | MR | Zbl

[16] Long, Darren D. Immersions and embeddings of totally geodesic surfaces, Bull. Lond. Math. Soc., Volume 19 (1987) no. 5, pp. 481-484 | DOI | MR | Zbl

[17] Magee, Michael The limit points of the bass notes of arithmetic hyperbolic surfaces (2024) (https://arxiv.org/abs/2403.00928)

[18] Margulis, Gregory A. Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR | Zbl

[19] Mostow, George D. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math., Inst. Hautes Étud. Sci., Volume 34 (1968), pp. 53-104 | DOI | MR | Zbl | Numdam

[20] Neumann, Walter D.; Reid, Alan W. Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) (Ohio State University Mathematical Research Institute Publications), Volume 1, Walter de Gruyter, 1992, pp. 273-310 | MR | Zbl

[21] Salem, Raphaël Algebraic numbers and Fourier analysis, Selected reprints (The Wadsworth Mathematics Series), Wadsworth, 1983, p. iii+68 | MR | Zbl

[22] Scott, Peter Subgroups of surface groups are almost geometric, J. Lond. Math. Soc., Volume 17 (1978) no. 3, pp. 555-565 | DOI | MR | Zbl

[23] Thomson, Scott A. Quasi-arithmeticity of lattices in PO(n,1), Geom. Dedicata, Volume 180 (2016), pp. 85-94 | DOI | MR | Zbl

Cité par Sources :