Article de recherche - Probabilités
Stochastic proof of the sharp symmetrized Talagrand inequality
[Une preuve stochastique de l’inégalité de Talagrand symétrisée optimale]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1779-1784

A new proof of the sharp symmetrized form of Talagrand’s transport-entropy inequality is given. Compared to stochastic proofs of other Gaussian functional inequalities, the new idea here is a certain coupling induced by time-reversed martingale representations.

Nous donnons une nouvelle preuve de la version symétrisée de l’inégalité de transport-entropie de Talagrand avec constante optimale. En comparaison avec d’autres preuves stochastiques d’inégalités fonctionnelles gaussiennes, l’élément nouveau ici est l’utilisation d’un couplage induit par un retournement du temps sur des représentations de martingales.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.681
Classification : 60H30, 39B62, 52A40
Keywords: Transport inequalities, Gaussian inequalities, Blaschke–Santaló inequality, Martingale representations
Mots-clés : Inégalités de transport, inégalités Gaussiennes, inégalité de Blaschke–Santaló, représentations de martingales

Courtade, Thomas A.  1   ; Fathi, Max  2 , 3 , 4   ; Mikulincer, Dan  5

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 USA
2 Université Paris Cité and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions and Laboratoire de Probabilités, Statistique et Modélisation, F-75013 Paris, France
3 DMA, École normale supérieure, Université PSL, CNRS, 75005 Paris, France
4 Institut Universitaire de France
5 Department of Mathematics, MIT, Cambridge, MA 02139 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1779_0,
     author = {Courtade, Thomas A. and Fathi, Max and Mikulincer, Dan},
     title = {Stochastic proof of the sharp symmetrized {Talagrand} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1779--1784},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.681},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.681/}
}
TY  - JOUR
AU  - Courtade, Thomas A.
AU  - Fathi, Max
AU  - Mikulincer, Dan
TI  - Stochastic proof of the sharp symmetrized Talagrand inequality
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1779
EP  - 1784
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.681/
DO  - 10.5802/crmath.681
LA  - en
ID  - CRMATH_2024__362_G12_1779_0
ER  - 
%0 Journal Article
%A Courtade, Thomas A.
%A Fathi, Max
%A Mikulincer, Dan
%T Stochastic proof of the sharp symmetrized Talagrand inequality
%J Comptes Rendus. Mathématique
%D 2024
%P 1779-1784
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.681/
%R 10.5802/crmath.681
%G en
%F CRMATH_2024__362_G12_1779_0
Courtade, Thomas A.; Fathi, Max; Mikulincer, Dan. Stochastic proof of the sharp symmetrized Talagrand inequality. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1779-1784. doi: 10.5802/crmath.681

[1] Artstein-Avidan, S.; Klartag, B.; Milman, V. The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, Volume 51 (2004) no. 1-2, pp. 33-48 | DOI | MR | Zbl

[2] Aras, Efe; Courtade, Thomas A.; Zhang, Albert Equality cases in the Anantharam–Jog–Nair inequality (2022) (https://arxiv.org/abs/2206.11809)

[3] Ball, Keith M. Isometric problems in p and sections of convex sets, Ph. D. Thesis, University of Cambridge (1986)

[4] Bobkov, S. G.; Götze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., Volume 163 (1999) no. 1, pp. 1-28 | DOI | MR | Zbl

[5] Borell, Christer Diffusion equations and geometric inequalities, Potential Anal., Volume 12 (2000) no. 1, pp. 49-71 | DOI | MR | Zbl

[6] Cordero-Erausquin, Dario; Gozlan, Nathael; Nakamura, Shohei; Tsuji, Hiroshi Duality and Heat flow (2024) (https://arxiv.org/abs/2403.15357)

[7] Eldan, Ronen; Mikulincer, Dan Stability of the Shannon–Stam inequality via the Föllmer process, Probab. Theory Relat. Fields, Volume 177 (2020) no. 3-4, pp. 891-922 | DOI | MR | Zbl

[8] Fathi, Max A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian measure, Electron. Commun. Probab., Volume 23 (2018), 81, 9 pages | DOI | MR | Zbl

[9] Fradelizi, M.; Meyer, M. Some functional forms of Blaschke–Santaló inequality, Math. Z., Volume 256 (2007) no. 2, pp. 379-395 | DOI | MR | Zbl

[10] Gozlan, Nathael; Léonard, C. Transport inequalities. A survey, Markov Process. Relat. Fields, Volume 16 (2010) no. 4, pp. 635-736 | MR | Zbl

[11] Gozlan, Nathael Characterization of Talagrand’s like transportation-cost inequalities on the real line, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 400-425 | DOI | MR | Zbl

[12] Kolesnikov, Alexander V.; Werner, Elisabeth M. Blaschke–Santaló inequality for many functions and geodesic barycenters of measures, Adv. Math., Volume 396 (2022), 108110, 44 pages | DOI | MR | Zbl

[13] Lehec, Joseph A direct proof of the functional Santaló inequality, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 1-2, pp. 55-58 | DOI | MR | Zbl | Numdam

[14] Lehec, Joseph Partitions and functional Santaló inequalities, Arch. Math., Volume 92 (2009) no. 1, pp. 89-94 | DOI | MR | Zbl

[15] Lehec, Joseph Representation formula for the entropy and functional inequalities, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013) no. 3, pp. 885-899 | DOI | MR | Zbl | Numdam

[16] Mikulincer, Dan Universality of High-Dimensional Systems, Ph. D. Thesis, Weizmann Institute of Science (2021)

[17] Meyer, Mathieu; Pajor, Alain On the Blaschke-Santaló inequality, Arch. Math., Volume 55 (1990) no. 1, pp. 82-93 | DOI | MR | Zbl

[18] Nakamura, Shohei; Tsuji, Hiroshi The functional volume product under heat flow (2023) (https://arxiv.org/abs/2401.00427)

[19] Saint-Raymond, J. Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981 (Publ. Math. Univ. Pierre et Marie Curie), Volume 46, Univ. Paris VI, 1981 (Exp. No. 11, 25 p.) | MR | Zbl

[20] Santaló, L. A. An affine invariant for convex bodies of n-dimensional space, Port. Math., Volume 8 (1949), pp. 155-161 | MR | Zbl

[21] Talagrand, M. Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 587-600 | DOI | MR | Zbl

Cité par Sources :