Article de recherche - Théorie des opérateurs
On the small scale nonlinear theory of operator spaces
[Sur la théorie non linéaire à petite échelle dans les espaces d’opérateurs]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G13, pp. 1893-1914

We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.

Nous commençons l’étude de la géométrie à petite échelle des espaces d’opérateurs. Les auteurs ont précédemment montré qu’une application entre espaces d’opérateurs qui est complètement grossière (c’est-à-dire que la séquence de ses amplifications est équi-grossière) doit être -linéaire. Nous obtenons une généralisation du résultat susmentionné aux applications complètement grossières définies sur la boule unité d’un espace d’opérateurs. En assouplissant la condition à une petite échelle, nous prouvons qu’il existe de nombreux exemples non linéaires d’applications qui sont complètement Lipschitz à petite échelle. Nous définissons un paramètre géométrique pour les espaces d’opérateurs hilbertiens homogènes qui impose des restrictions sur l’existence de telles applications.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.678
Classification : 47L25, 46L07, 46B80
Keywords: Operator spaces, Coarse geometry, Embeddings
Mots-clés : Espaces d’opérateurs, Géométrie grossière, Injections

Braga, Bruno M.  1   ; Chávez-Domínguez, Javier Alejandro  2

1 IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
2 Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1893_0,
     author = {Braga, Bruno M. and Ch\'avez-Dom{\'\i}nguez, Javier Alejandro},
     title = {On the small scale nonlinear theory of operator spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1893--1914},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G13},
     doi = {10.5802/crmath.678},
     zbl = {07962938},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.678/}
}
TY  - JOUR
AU  - Braga, Bruno M.
AU  - Chávez-Domínguez, Javier Alejandro
TI  - On the small scale nonlinear theory of operator spaces
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1893
EP  - 1914
VL  - 362
IS  - G13
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.678/
DO  - 10.5802/crmath.678
LA  - en
ID  - CRMATH_2024__362_G13_1893_0
ER  - 
%0 Journal Article
%A Braga, Bruno M.
%A Chávez-Domínguez, Javier Alejandro
%T On the small scale nonlinear theory of operator spaces
%J Comptes Rendus. Mathématique
%D 2024
%P 1893-1914
%V 362
%N G13
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.678/
%R 10.5802/crmath.678
%G en
%F CRMATH_2024__362_G13_1893_0
Braga, Bruno M.; Chávez-Domínguez, Javier Alejandro. On the small scale nonlinear theory of operator spaces. Comptes Rendus. Mathématique, Tome 362 (2024) no. G13, pp. 1893-1914. doi: 10.5802/crmath.678

[1] Braga, Bruno M.; Chávez-Domínguez, Javier Alejandro Completely coarse maps are -linear, Proc. Am. Math. Soc., Volume 149 (2021) no. 3, pp. 1139-1149 | MR | DOI | Zbl

[2] Braga, Bruno M.; Chávez-Domínguez, Javier Alejandro; Sinclair, Thomas Lipschitz geometry of operator spaces and Lipschitz-free operator spaces, Math. Ann., Volume 388 (2024) no. 1, pp. 1053-1090 | DOI | MR | Zbl

[3] Blecher, D.; Le Merdy, C. Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Clarendon Press, 2004, x+387 pages (Oxford Science Publications) | DOI | MR | Zbl

[4] Baudier, F.; Lancien, G.; Schlumprecht, Th. The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl

[5] Braga, Bruno M.; Oikhberg, T. Coarse geometry of operator spaces and complete isomorphic embeddings into 1 and c 0 -sums of operator spaces, Math. Z., Volume 304 (2023) no. 3, 52, 19 pages | DOI | MR | Zbl

[6] Braga, Bruno M. On weaker notions of nonlinear embeddings between Banach spaces, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3149-3169 | DOI | MR | Zbl

[7] Braga, Bruno M. Towards a theory of coarse geometry of operator spaces, Isr. J. Math., Volume 259 (2024) no. 2, pp. 527-558 | DOI | MR | Zbl

[8] Bourgain, J.; Tzafriri, L. Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Isr. J. Math., Volume 57 (1987) no. 2, pp. 137-224 | DOI | MR | Zbl

[9] Christensen, E.; Effros, E.; Sinclair, A. Completely bounded multilinear maps and C * -algebraic cohomology, Invent. Math., Volume 90 (1987) no. 2, pp. 279-296 | DOI | MR | Zbl

[10] Christensen, E. On the complete boundedness of the Schur block product, Proc. Am. Math. Soc., Volume 147 (2019) no. 2, pp. 523-532 | DOI | MR | Zbl

[11] Dineen, S.; Radu, C. Completely bounded polynomials between operator spaces, Math. Scand., Volume 107 (2010) no. 2, pp. 249-266 | DOI | MR | Zbl

[12] Defant, A.; Wiesner, D. Polynomials in operator space theory, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5493-5525 | DOI | MR | Zbl

[13] Effros, E.; Junge, M.; Ruan, Z.-J. Integral mappings and the principle of local reflexivity for noncommutative L 1 -spaces, Ann. Math., Volume 151 (2000) no. 1, pp. 59-92 | DOI | MR | Zbl

[14] Effros, E.; Ruan, Z.-J. Operator spaces, London Mathematical Society Monographs. New Series, 23, Clarendon Press, 2000, xvi+363 pages | MR | Zbl

[15] Godefroy, G.; Kalton, N. J. Lipschitz-free Banach spaces, Stud. Math., Volume 159 (2003) no. 1, pp. 121-141 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday) | DOI | MR | Zbl

[16] Guentner, E.; Kaminker, J. Exactness and uniform embeddability of discrete groups, J. Lond. Math. Soc., Volume 70 (2004) no. 3, pp. 703-718 | DOI | MR | Zbl

[17] Heinrich, Stefan Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | DOI | MR | Zbl

[18] Johnson, W. B.; Lindenstrauss, J.; Schechtman, G. Banach spaces determined by their uniform structures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 430-470 | DOI | MR | Zbl

[19] Junge, M. Factorization Theory for Spaces of Operators, 1996 (Habilitation Thesis, Kiel)

[20] Kalton, N. The nonlinear geometry of Banach spaces, Rev. Mat. Complut., Volume 21 (2008) no. 1, pp. 7-60 | DOI | MR | Zbl

[21] Lee, H. Type and cotype of operator spaces, Stud. Math., Volume 185 (2008) no. 3, pp. 219-247 | DOI | MR | Zbl

[22] Lee, H. Weak type (2,H) and weak cotype (2,H) of operator spaces, Houston J. Math., Volume 35 (2009) no. 4, pp. 1171-1201 | MR | Zbl

[23] Mendel, M.; Naor, A. Metric cotype, Ann. Math., Volume 168 (2008) no. 1, pp. 247-298 | DOI | MR | Zbl

[24] Oikhberg, T.; Rosenthal, H. Extension properties for the space of compact operators, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 251-308 | DOI | MR | Zbl

[25] Pisier, G. Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, 2003, viii+478 pages | DOI | MR | Zbl

[26] Pisier, G. Dvoretzky’s theorem for operator spaces, Houston J. Math., Volume 22 (1996) no. 2, pp. 399-416 | MR | Zbl

[27] Pisier, G. Non-commutative vector valued L p -spaces and completely p-summing maps, Astérisque, Société Mathématique de France, 1998 no. 247, vi+131 pages | MR | Zbl | Numdam

[28] Rosendal, C. Equivariant geometry of Banach spaces and topological groups, Forum Math. Sigma, Volume 5 (2017), e22, 62 pages | DOI | MR | Zbl

[29] Rosenthal, H. A characterization of Banach spaces containing l 1 , Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 2411-2413 | DOI | MR | Zbl

[30] Schur, J. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., Volume 140 (1911), pp. 1-28 | DOI | MR | Zbl

[31] Spielman, D.; Srivastava, N. An elementary proof of the restricted invertibility theorem, Isr. J. Math., Volume 190 (2012), pp. 83-91 | DOI | MR | Zbl

[32] Zhang, Chun Representation and geometry of operator spaces, Ph. D. Thesis, University of Houston (1995)

[33] Zhang, Chun Completely bounded Banach-Mazur distance, Proc. Edinb. Math. Soc., II. Ser., Volume 40 (1997) no. 2, pp. 247-260 | DOI | MR | Zbl

Cité par Sources :