Article de recherche - Géométrie et Topologie
Symmedians as Hyperbolic Barycenters
[Symédianes comme barycentres hyperboliques]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1743-1762

The symmedian point of a triangle enjoys several geometric and optimality properties, which also serve to define it. We develop a new dynamical coordinatization of the symmedian, which naturally generalizes to other ideal hyperbolic polygons beyond triangles. We prove that in general this point still satisfies analogous geometric and optimality properties to those of the symmedian, making it into a hyperbolic barycenter. We initiate a study of moduli spaces of ideal polygons with fixed hyperbolic barycenter, and of some additional optimality properties of this point for harmonic (and sufficiently regular) ideal polygons.

Le point symédiane d’un triangle possède plusieurs propriétés géométriques d’optimalité, qui peuvent servir à la définir. Nous développons une nouvelle définition dynamique du point symédiane, qui se généralise naturellement à d’autres polygones idéaux hyperboliques, au-delà des triangles. Nous prouvons que, de manière générale, ce point satisfait toujours des propriétés géométriques d’optimalité analogues à celles du point symédiane, qui en font un barycentre hyperbolique. Nous entamons une étude des espaces de modules des polygones idéaux dont le barycentre hyperbolique est fixe, ainsi que de certaines propriétés d’optimalité supplémentaires pour les polygones idéaux harmoniques (et suffisamment réguliers).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.677
Classification : 51M15, 52C30, 51A45, 53A70
Keywords: symmedian point, Hyperbolic barycenter, harmonic polygon, ideal hyperbolic polygon
Mots-clés : Barycentre hyperbolique, polygone harmonique, polygone hyperbolique idéal

Arnold, Maxim  1   ; Arreche, Carlos E.  1

1 Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1743_0,
     author = {Arnold, Maxim and Arreche, Carlos E.},
     title = {Symmedians as {Hyperbolic} {Barycenters}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1743--1762},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.677},
     zbl = {07949982},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.677/}
}
TY  - JOUR
AU  - Arnold, Maxim
AU  - Arreche, Carlos E.
TI  - Symmedians as Hyperbolic Barycenters
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1743
EP  - 1762
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.677/
DO  - 10.5802/crmath.677
LA  - en
ID  - CRMATH_2024__362_G12_1743_0
ER  - 
%0 Journal Article
%A Arnold, Maxim
%A Arreche, Carlos E.
%T Symmedians as Hyperbolic Barycenters
%J Comptes Rendus. Mathématique
%D 2024
%P 1743-1762
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.677/
%R 10.5802/crmath.677
%G en
%F CRMATH_2024__362_G12_1743_0
Arnold, Maxim; Arreche, Carlos E. Symmedians as Hyperbolic Barycenters. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1743-1762. doi: 10.5802/crmath.677

[1] Arnold, Maxim; Fuchs, Dmitry; Izmestiev, Ivan; Tabachnikov, Serge Cross-ratio dynamics on ideal polygons, Int. Math. Res. Not., Volume 2022 (2022) no. 9, pp. 6770-6853 | DOI | MR | Zbl

[2] Aboud, Quinton; Izosimov, Anton The limit point of the pentagram map and infinitesimal monodromy, Int. Math. Res. Not., Volume 2022 (2022) no. 7, pp. 5383-5397 | DOI | MR | Zbl

[3] Akopyan, A. V. On some classical constructions extended to hyperbolic geometry, Mat. Prosvesh., Volume 3 (2009) no. 13, pp. 155-170

[4] Akopyan, A. V. Geometry in figures, CreateSpace Independent Publishing Platform, 2017

[5] Bani-Yaghoub, M.; Rhee, Noah H.; Sadek, Jawad An algebraic method to find the symmedian point of a triangle, Math. Mag., Volume 89 (2016) no. 3, pp. 197-200 | DOI | MR | Zbl

[6] Casey, J. Supplementary chapter, A Sequel to the First Six Books of the Elements of Euclid, Hodges, Figgis, & Co., 1888, pp. 165-222

[7] Coxeter, H. S. M. The real projective plane, Springer, 1993, xiv+222 pages | MR | Zbl

[8] Dragović, Vladimir; Radnović, Milena Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Frontiers in Mathematics, Birkhäuser/Springer, 2011, viii+293 pages | DOI | MR | Zbl

[9] Drach, Kostiantyn; Schwartz, Richard E. A hyperbolic view of the seven circles theorem, Math. Intell., Volume 42 (2020) no. 2, pp. 61-65 | DOI | MR | Zbl

[10] Glick, Max The limit point of the pentagram map, Int. Math. Res. Not., Volume 2020 (2020) no. 9, pp. 2818-2831 | DOI | MR | Zbl

[11] Garcia, Ronaldo Alves; Reznik, Dan; Roitman, Pedro New properties of harmonic polygons, J. Geom. Graph., Volume 26 (2022) no. 2, pp. 217-236 | MR | Zbl

[12] Honsberger, Ross Episodes in nineteenth and twentieth century Euclidean geometry, New Mathematical Library, 37, Mathematical Association of America, 1995, xiv+174 pages | MR | Zbl | DOI

[13] Kaiser, M. J.; Morin, T. L. Characterizing centers of convex bodies via optimization, J. Math. Anal. Appl., Volume 184 (1994) no. 3, pp. 533-559 | DOI | MR | Zbl

[14] Mackay, John Sturgeon Early History of the Symmedian Point, Proc. Edinb. Math. Soc., Volume 11 (1892), pp. 92-103 | Zbl | DOI

[15] Reynolds, William F. Hyperbolic geometry on a hyperboloid, Am. Math. Mon., Volume 100 (1993) no. 5, pp. 442-455 | DOI | MR | Zbl

[16] Schwartz, Richard E. The pentagram map, Exp. Math., Volume 1 (1992) no. 1, pp. 71-81 | MR | Zbl

[17] Simmons, T. C. A new Method for the Investigation of Harmonic Polygons, Proc. Lond. Math. Soc., Volume 18 (1886), pp. 289-304 | Zbl | DOI | MR

[18] Tarry, G.; Neuberg, J. Sur les polygones et les polyèdres harmoniques, Association Française pour l’Avancement des Sciences, Compte Rendu de la 15e Session - Nancy 1886(Seconde Partie – Notes et Mémoires), 1887, pp. 12-24

[19] Tabachnikov, Serge; Tsukerman, Emmanuel On the discrete bicycle transformation, Publ. Mat. Urug., Volume 14 (2013), pp. 201-219 | MR | Zbl

[20] Tabachnikov, Serge; Tsukerman, Emmanuel Circumcenter of mass and generalized Euler line, Discrete Comput. Geom., Volume 51 (2014) no. 4, pp. 815-836 | DOI | MR | Zbl

Cité par Sources :