Article de recherche - Systèmes dynamiques, Théorie du contrôle
Controllability and feedback stabilizability in a nonuniform framework
[Contrôlabilité et stabilisabilité par rétroaction dans un cadre non uniforme]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1667-1692

We propose a new controllability property for linear nonautonomous control systems in finite dimension: the nonuniform complete controllability, which is halfway between the classical Kalman’s properties of complete controllability and uniform complete controllability. This new concept has a strong linkage, as we prove, with the property of nonuniform bounded growth for the corresponding plant. In addition, we also prove that if a control system is nonuniformly completely controllable and its plant (uncontrolled part) has the property of nonuniform bounded growth, then there exist a linear feedback control leading to a nonuniformly exponentially stable closed–loop system.

Nous proposons une nouvelle propriété de contrôlabilité pour des systèmes de contrôle linéaires non autonomes en dimension finie : la contrôlabilité complète non uniforme, qui est à mi-chemin entre les propriétés classiques de contrôlabilité complète et la contrôlabilité complète uniforme établies par Kalman. Ce nouveau concept à un lien étroit, comme nous le prouvons, avec la propriété de croissance bornée non uniforme de la plante correspondante. En outre, il est aussi prouvé que si un système de contrôle est non uniformément complètement contrôlable et sa plante (partie non contrôlée) à la propriété de croissance bornée non uniforme, alors on a un résultat de stabilisation asymptotique par bouclage linéaire ou la convergence est non uniformément exponentielle.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.672
Classification : 34D05, 34D09, 93B05, 93D15
Keywords: Linear nonautonomous systems, nonuniform controllability, nonuniform exponential stabilizability, nonuniform bounded growth
Mots-clés : Systèmes linéaires non autonomes, Contrôlabilité non uniforme, Stabilité exponentielle non uniforme, Croissance bornée non uniforme

Huerta, Ignacio  1   ; Monzón, Pablo  2   ; Robledo, Gonzalo  3

1 Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
2 Facultad de Ingeniería – Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay
3 Departamento de Matemáticas – Universidad de Chile, Casilla 653, Las Palmeras 3425, Ñuñoa – Santiago, Chile
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1667_0,
     author = {Huerta, Ignacio and Monz\'on, Pablo and Robledo, Gonzalo},
     title = {Controllability and feedback stabilizability in a nonuniform framework},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1667--1692},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.672},
     zbl = {07949978},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.672/}
}
TY  - JOUR
AU  - Huerta, Ignacio
AU  - Monzón, Pablo
AU  - Robledo, Gonzalo
TI  - Controllability and feedback stabilizability in a nonuniform framework
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1667
EP  - 1692
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.672/
DO  - 10.5802/crmath.672
LA  - en
ID  - CRMATH_2024__362_G12_1667_0
ER  - 
%0 Journal Article
%A Huerta, Ignacio
%A Monzón, Pablo
%A Robledo, Gonzalo
%T Controllability and feedback stabilizability in a nonuniform framework
%J Comptes Rendus. Mathématique
%D 2024
%P 1667-1692
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.672/
%R 10.5802/crmath.672
%G en
%F CRMATH_2024__362_G12_1667_0
Huerta, Ignacio; Monzón, Pablo; Robledo, Gonzalo. Controllability and feedback stabilizability in a nonuniform framework. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1667-1692. doi: 10.5802/crmath.672

[1] Anh, Pham The; Czornik, Adam; Doan, Thai Son; Siegmund, Stefan Proportional local assignability of dichotomy spectrum of one-sided continuous time-varying linear systems, J. Differ. Equations, Volume 309 (2022), pp. 176-195 | DOI | MR | Zbl

[2] Anderson, Brian D. O.; Ilchmann, Achim; Wirth, Fabian R. Stabilizability of linear time-varying systems, Syst. Control Lett., Volume 62 (2013) no. 9, pp. 747-755 | MR | DOI | Zbl

[3] Anderson, Brian D. O.; Moore, John B. Optimal control, linear quadratic methods, Dover Publications, 1990 | MR

[4] Artstein, Zvi Uniform controllability via the limiting systems, Appl. Math. Optim., Volume 9 (1982) no. 2, pp. 111-131 | DOI | MR | Zbl

[5] Anderson, Brian D. O.; Silverman, L. M. Uniform complete controllability for time-varying systems, IEEE Trans. Autom. Control, Volume 12 (1967) no. 6, pp. 790-791 | DOI

[6] Babiarz, Artur; Cuong, Le Viet; Czornik, Adam; Doan, Thai Son Necessary and sufficient conditions for assignability of dichotomy spectra of continuous time-varying linear systems, Automatica, Volume 125 (2021), 109466, 8 pages | DOI | MR | Zbl

[7] Barreira, Luis; Valls, Claudia Stability of nonautonomous differential equations, Lecture Notes in Mathematics, 1926, Springer, 2008, xiv+285 pages | DOI | MR | Zbl

[8] Chen, C. T. Introduction to linear systems theory, Holt, Rinehart and Winston Inc., 1970

[9] Chu, Jifeng; Liao, Fang-Fang; Siegmund, Stefan; Xia, Yonghui; Zhang, Weinian Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., Volume 139 (2015) no. 5, pp. 538-557 | DOI | MR | Zbl

[10] Coppel, W. A. Dichotomies in stability theory, Lecture Notes in Mathematics, 629, Springer, 1978, ii+98 pages | DOI | MR | Zbl

[11] d’Andréa-Novel, B.; Cohen de Lara, M. Commande linéaire des systèmes dynamiques, Modélisation. Analyse. Simulation. Commande, Masson, 1994, xviii+245 pages (With a preface by A. Bensoussan) | MR | Zbl

[12] Hahn, Wolfgang Stability of motion, Grundlehren der Mathematischen Wissenschaften, 138, Springer, 1967, xi+446 pages | MR | Zbl | DOI

[13] Ilchmann, Achim; Kern, Günter Stabilizability of systems with exponential dichotomy, Syst. Control Lett., Volume 8 (1987) no. 3, pp. 211-220 | DOI | MR | Zbl

[14] Ikeda, Masao; Maeda, Hajime; Kodama, Shinzo Stabilization of linear systems, SIAM J. Control, Volume 10 (1972), pp. 716-729 | Zbl | DOI | MR

[15] Kalman, R. E. Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., II, Volume 5 (1960), pp. 102-119 | MR | Zbl

[16] Kalman, R. E. On the general theory of control systems, IFAC Proceedings Volumes, Volume 1 (1960) no. 1, pp. 491-502 | Zbl | DOI

[17] Kalman, R. E. Lectures on controllability and observability, Controllability and Observability (C.I.M.E. 1st Ciclo, Sasso Marconi (Bologna), 1968) (Centro Internazionale Matematico Estivo (C.I.M.E.)), Ed. Cremonese, 1969, pp. 1-149 | MR | Zbl

[18] Kloeden, Peter E.; Rasmussen, Martin Nonautonomous dynamical systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011, viii+264 pages | DOI | MR | Zbl

[19] Kreindler, E.; Sarachik, P. On the concepts of controllability and observability of linear systems, IEEE Trans. Autom. Control, Volume 9 (1964) no. 2, pp. 129-136 | MR | DOI

[20] Liao, Fang-Fang; Jiang, Yongxin; Xie, Zhiting A generalized nonuniform contraction and Lyapunov function, Abstr. Appl. Anal, Volume 2012 (2012), 613038, 14 pages | DOI | MR | Zbl

[21] Lin, Zhensheng; Lin, Yan-Xia Linear systems exponential dichotomy and structure of sets of hyperbolic points, World Scientific, 2000, xii+205 pages | DOI | MR | Zbl

[22] Mitropolsky, Yu. A.; Samoilenko, A. M.; Kulik, V. L. Dichotomies and stability in nonautonomous linear systems, Stability and Control: Theory, Methods and Applications, 14, Taylor & Francis, 2003, xx+368 pages | MR | Zbl

[23] Palmer, Kenneth J. Exponential dichotomy and expansivity, Ann. Mat. Pura Appl., Volume 185 (2006), p. S171-S185 | DOI | MR | Zbl

[24] Phat, V. N.; Ha, Q. P. New characterization of controllability via stabilizability and Riccati equation for LTV systems, IMA J. Math. Control Inf., Volume 25 (2008) no. 4, pp. 419-429 | DOI | MR | Zbl

[25] Rouche, Nicolas; Habets, P.; Laloy, M. Stability theory by Liapunov’s direct method, Applied Mathematical Sciences, 22, Springer, 1977, xii+396 pages | MR | Zbl | DOI

[26] Rotea, M. A.; Khargonekar, P. P. Stabilizability of linear time-varying and uncertain linear systems, IEEE Trans. Autom. Control, Volume 33 (1988) no. 9, pp. 884-887 | MR | DOI | Zbl

[27] Rugh, Wilson J. Linear system theory, Prentice Hall Information and System Sciences Series, Prentice Hall, 1993, xii+356 pages | MR

[28] Silverman, L. M.; Anderson, Brian D. O. Controllability, observability and stability of linear systems, SIAM J. Control, Volume 6 (1968), pp. 121-130 | DOI | MR | Zbl

[29] Siegmund, Stefan Dichotomy spectrum for nonautonomous differential equations, J. Dyn. Differ. Equations, Volume 14 (2002) no. 1, pp. 243-258 | DOI | MR | Zbl

[30] Siegmund, Stefan Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., Volume 65 (2002) no. 2, pp. 397-410 | DOI | MR | Zbl

[31] Silva, César M. Nonuniform μ-dichotomy spectrum and kinematic similarity, J. Differ. Equations, Volume 375 (2023), pp. 618-652 | DOI | MR | Zbl

[32] Sontag, Eduardo D. Mathematical control theory. Deterministic finite dimensional systems., Texts in Applied Mathematics, 6, Springer, 1998 | MR | Zbl

[33] Zhou, Kemin; Doyle, John C.; Glover, Keith Robust and optimal control, Prentice Hall, 1996 | Zbl

[34] Zhang, Xiang Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 1889-1916 | DOI | MR | Zbl

[35] Zhou, Bin On asymptotic stability of linear time-varying systems, Automatica, Volume 68 (2016), pp. 266-276 | DOI | MR | Zbl

[36] Zhou, Bin Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., Volume 11 (2017) no. 9, pp. 1434-1442 | DOI | MR

[37] Zhou, Bin Lyapunov differential equations and inequalities for stability and stabilization of linear time-varying systems, Automatica, Volume 131 (2021), 109785, 11 pages | DOI | MR | Zbl

[38] Zhu, Hailong; Li, Zhaoxiang Nonuniform dichotomy spectrum intervals: theorem and computation, J. Appl. Anal. Comput., Volume 9 (2019) no. 3, pp. 1102-1119 | DOI | MR | Zbl

[39] Zhou, Linfeng; Lu, Kening; Zhang, Weinian Equivalences between nonuniform exponential dichotomy and admissibility, J. Differ. Equations, Volume 262 (2017) no. 1, pp. 682-747 | DOI | MR | Zbl

Cité par Sources :