[Formes quadratiques de dimension dans ]
For , confirming a weak version of a conjecture of Hoffmann, we show that every anisotropic quadratic form in of dimension splits over a finite extension of the base field of degree not divisible by . The first new case is , where we obtain a classification of the corresponding quadratic forms up to odd degree base field extensions and get this way a strong upper bound on their essential -dimension. As well, we compute the reduced Chow group of the maximal orthogonal grassmannian of the quadratic form and conclude that its canonical -dimension is .
Pour , en confirmant une version faible d’une conjecture de Hoffmann, on montre que toute forme quadratique anisotrope de dimension dans se déploie sur une extension finie du corps de base d’un degré qui n’est pas divisible par . Le premier nouveau cas est celui de , où l’on obtient une classification des formes quadratiques correspondantes à une extension de degré impair près ce qui donne une forte borne supérieure pour leur -dimension essentielle. De plus, on détermine le groupe de Chow réduit de la grassmannienne orthogonale maximale de la forme quadratique et on en déduit que sa dimension -canonique est égale à .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.668
Keywords: Quadratic forms over fields, projective homogeneous varieties, Chow rings
Mots-clés : Formes quadratiques sur des corps, variétés projectives homogènes, anneaux de Chow.
Harvey, Curtis R.  1 ; Karpenko, Nikita A.  1
CC-BY 4.0
@article{CRMATH_2024__362_G11_1539_0,
author = {Harvey, Curtis R. and Karpenko, Nikita A.},
title = {Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1539--1543},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G11},
doi = {10.5802/crmath.668},
zbl = {07945495},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.668/}
}
TY - JOUR
AU - Harvey, Curtis R.
AU - Karpenko, Nikita A.
TI - Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$
JO - Comptes Rendus. Mathématique
PY - 2024
SP - 1539
EP - 1543
VL - 362
IS - G11
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.668/
DO - 10.5802/crmath.668
LA - en
ID - CRMATH_2024__362_G11_1539_0
ER -
%0 Journal Article
%A Harvey, Curtis R.
%A Karpenko, Nikita A.
%T Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$
%J Comptes Rendus. Mathématique
%D 2024
%P 1539-1543
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.668/
%R 10.5802/crmath.668
%G en
%F CRMATH_2024__362_G11_1539_0
Harvey, Curtis R.; Karpenko, Nikita A. Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1539-1543. doi: 10.5802/crmath.668
[1] Quadratic forms over semilocal rings, Lecture Notes in Mathematics, 655, Springer, 1978, vi+199 pages | DOI | MR | Zbl
[2] Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math., Volume 8 (2003), pp. 279-330 | DOI | MR | Zbl
[3] Essential dimension of spinor and Clifford groups, Algebra Number Theory, Volume 8 (2014) no. 2, pp. 457-472 | DOI | MR | Zbl
[4] The algebraic and geometric theory of quadratic forms, Colloquium Publications, 56, American Mathematical Society, 2008, viii+435 pages | DOI | MR | Zbl
[5] Liaison des formes de Pfister et corps de fonctions de quadriques en caractéristique , Ph. D. Thesis, Université de Franche-Compte, Besançon (2006)
[6] On the dimensions of anisotropic quadratic forms in , Invent. Math., Volume 131 (1998) no. 1, pp. 185-198 | DOI | MR | Zbl
[7] On the cohomology groups of the field of rational functions, Mathematics in St. Petersburg (Amer. Math. Soc. Transl.), Volume 174, American Mathematical Society, 1996, pp. 21-44 | DOI | MR | Zbl
[8] Canonical dimension, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency (2010), pp. 146-161 | MR | Zbl
[9] Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, J. Reine Angew. Math., Volume 677 (2013), pp. 179-198 | DOI | MR | Zbl
[10] Minimal canonical dimensions of quadratic forms, Doc. Math., Volume 2015 (2015), pp. 367-385 | MR | Zbl
[11] Essential dimension: a survey, Transform. Groups, Volume 18 (2013) no. 2, pp. 415-481 | Zbl | DOI | MR
[12] Quadratische Formen in beliebigen Körpern, Invent. Math., Volume 1 (1966), pp. 116-132 | DOI | MR | Zbl
[13] Motivic Steenrod operations in characteristic , Forum Math. Sigma, Volume 8 (2020), e52, 25 pages | DOI | MR | Zbl
[14] Essential dimension of the spin groups in characteristic 2, Comment. Math. Helv., Volume 94 (2019) no. 1, pp. 1-20 | DOI | MR | Zbl
[15] Motives of quadrics with applications to the theory of quadratic forms, Geometric methods in the algebraic theory of quadratic forms (Lecture Notes in Mathematics), Volume 1835, Springer, 2004, pp. 25-101 | DOI | MR | Zbl
[16] On the Chow groups of quadratic Grassmannians, Doc. Math., Volume 10 (2005), pp. 111-130 | DOI | MR | Zbl
Cité par Sources :





