Article de recherche - Géométrie et Topologie
Classification results for polyharmonic helices in space forms
[Résultats de classification des hélices polyharmoniques dans les espaces formes]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1521-1537

We derive various classification results for polyharmonic helices, which are polyharmonic curves whose geodesic curvatures are all constant, in space forms. We obtain a complete classification of triharmonic helices in spheres of arbitrary dimension. Moreover, we show that polyharmonic helices of arbitrary order with non-zero geodesic curvatures to space forms of negative curvature must be geodesics.

Nous obtenons divers résultats de classification des hélices polyharmoniques, c’est à dire des courbes polyharmoniques dont les courbures géodésiques sont toutes constantes, dans les espaces formes. Nous obtenons une classification complète des hélices triharmoniques sur les sphères de dimension arbitraire. De plus, nous montrons que les hélices polyharmoniques d’ordre arbitraire à courbure géodésique non nulle dans des espaces formes de courbure négative sont des géodésiques.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.666
Classification : 58E20, 53C43, 31B30, 58E10
Keywords: r-harmonic curves, helices, space form
Mots-clés : Courbes r-harmonique, hélices, espaces formes

Branding, Volker  1

1 University of Vienna, Faculty of Mathematics Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1521_0,
     author = {Branding, Volker},
     title = {Classification results for polyharmonic helices in space forms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1521--1537},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.666},
     zbl = {07945494},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.666/}
}
TY  - JOUR
AU  - Branding, Volker
TI  - Classification results for polyharmonic helices in space forms
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1521
EP  - 1537
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.666/
DO  - 10.5802/crmath.666
LA  - en
ID  - CRMATH_2024__362_G11_1521_0
ER  - 
%0 Journal Article
%A Branding, Volker
%T Classification results for polyharmonic helices in space forms
%J Comptes Rendus. Mathématique
%D 2024
%P 1521-1537
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.666/
%R 10.5802/crmath.666
%G en
%F CRMATH_2024__362_G11_1521_0
Branding, Volker. Classification results for polyharmonic helices in space forms. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1521-1537. doi: 10.5802/crmath.666

[1] Branding, Volker; Montaldo, Stefano; Oniciuc, Cezar; Ratto, Andrea Higher order energy functionals, Adv. Math., Volume 370 (2020), 107236, 60 pages | DOI | MR | Zbl

[2] Branding, Volker On polyharmonic helices in space forms, Arch. Math., Volume 120 (2023) no. 2, pp. 213-225 | DOI | MR | Zbl

[3] Branding, Volker On p-biharmonic curves, J. Math. Anal. Appl., Volume 538 (2024) no. 2, 128384 | DOI | MR | Zbl

[4] Caddeo, Renzo; Montaldo, Stefano; Oniciuc, Cezar Biharmonic submanifolds of S 3 , Int. J. Math., Volume 12 (2001) no. 8, pp. 867-876 | DOI | MR | Zbl

[5] Caddeo, Renzo; Montaldo, Stefano; Oniciuc, Cezar Biharmonic submanifolds in spheres, Isr. J. Math., Volume 130 (2002), pp. 109-123 | DOI | MR | Zbl

[6] Caddeo, Renzo; Montaldo, Stefano; Oniciuc, Cezar; Piu, Paola The Euler–Lagrange method for biharmonic curves, Mediterr. J. Math., Volume 3 (2006) no. 3-4, pp. 449-465 | DOI | MR | Zbl

[7] Gay-Balmaz, François; Holm, Darryl D.; Meier, David M.; Ratiu, Tudor S.; Vialard, François-Xavier Invariant higher-order variational problems, Commun. Math. Phys., Volume 309 (2012) no. 2, pp. 413-458 | DOI | MR | Zbl

[8] Maeta, Shun The second variational formula of the k-energy and k-harmonic curves, Osaka J. Math., Volume 49 (2012) no. 4, pp. 1035-1063 | MR | Zbl

[9] Montaldo, Stefano; Oniciuc, Cezar; Ratto, Andrea Reduction methods for the bienergy, Rev. Roum. Math. Pures Appl., Volume 61 (2016) no. 4, pp. 261-292 | MR | Zbl

[10] Montaldo, Stefano; Oniciuc, Cezar; Ratto, Andrea Polyharmonic hypersurfaces into space forms, Isr. J. Math., Volume 249 (2022) no. 1, pp. 343-374 | DOI | MR | Zbl

[11] Montaldo, Stefano; Pámpano, A. Triharmonic curves in 3-dimensional homogeneous spaces, Mediterr. J. Math., Volume 18 (2021) no. 5, 198, 17 pages | DOI | MR | Zbl

[12] Montaldo, Stefano; Ratto, Andrea A general approach to equivariant biharmonic maps, Mediterr. J. Math., Volume 10 (2013) no. 2, pp. 1127-1139 | DOI | MR | Zbl

[13] Marsden, Jerrold E.; Ratiu, Tudor S. Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, Springer, 1999, xviii+582 pages | DOI | MR | Zbl

[14] Wang, S. B. The First Variation Formula for k-Harmonic Mapping, Journal of Nanchang University, Volume 13 (1989)

Cité par Sources :