Article de recherche - Équations aux dérivées partielles
Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
[Assouplissement des hypothèses relatives à la stratification nette et à l’écoulement en colonnes dans les systèmes de Saint-Venant]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1597-1626

We rigorously justify the bilayer shallow-water system as an approximation to the hydrostatic Euler equations in situations where the flow is density-stratified with close-to-piecewise constant density profiles, and close-to-columnar velocity profiles. Our theory accommodates with continuous stratification, so that admissible deviations from bilayer profiles are not pointwise small. This leads us to define refined approximate solutions that are able to describe at first order the flow in the pycnocline. Because the hydrostatic Euler equations are not known to enjoy suitable stability estimates, we rely on thickness-diffusivity contributions proposed by Gent and McWilliams. Our strategy also applies to one-layer and multilayer frameworks.

Nous justifions rigoureusement les équations de Saint-Venant bicouche en tant que modèle pour les équations d’Euler hydrostatiques dans les situations où l’écoulement est stratifié avec des profils de densité et de vitesse approximativement constants par morceaux. Notre théorie accepte des profils continus, de sorte que les écarts admissibles par rapport aux profils parfaitement bicouches ne sont pas petits pour la distance uniforme. Cela nous amène à définir des solutions approchantes raffinées capables de décrire au premier ordre l’écoulement dans la pycnocline. En l’absence d’estimations de stabilité appropriées sur les équations d’Euler hydrostatiques, nous nous appuyons sur des contributions de diffusivité sur les variables d’épaisseur proposées par Gent et McWilliams. Notre stratégie s’applique également aux équations de Saint-Venant monocouche et multicouche.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.665
Classification : 35L03, 35Q35, 76B55, 76E17
Keywords: Internal waves, Hydrostatic models, Sharp stratification limit, Columnar motion
Mots-clés : Ondes internes, Modèles hydrostatiques, limite d’interface, écoulements en colonne

Adim, Mahieddine  1   ; Bianchini, Roberta  2   ; Duchêne, Vincent  1 , 3

1 IRMAR, Univ. Rennes, F-35000 Rennes, France
2 IAC, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
3 CNRS
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1597_0,
     author = {Adim, Mahieddine and Bianchini, Roberta and Duch\^ene, Vincent},
     title = {Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1597--1626},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.665},
     zbl = {07949974},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.665/}
}
TY  - JOUR
AU  - Adim, Mahieddine
AU  - Bianchini, Roberta
AU  - Duchêne, Vincent
TI  - Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1597
EP  - 1626
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.665/
DO  - 10.5802/crmath.665
LA  - en
ID  - CRMATH_2024__362_G12_1597_0
ER  - 
%0 Journal Article
%A Adim, Mahieddine
%A Bianchini, Roberta
%A Duchêne, Vincent
%T Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
%J Comptes Rendus. Mathématique
%D 2024
%P 1597-1626
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.665/
%R 10.5802/crmath.665
%G en
%F CRMATH_2024__362_G12_1597_0
Adim, Mahieddine; Bianchini, Roberta; Duchêne, Vincent. Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1597-1626. doi: 10.5802/crmath.665

[1] Almgren, A.; Camassa, R.; Tiron, R. Shear instability of internal solitary waves in Euler fluids with thin pycnoclines, J. Fluid Mech., Volume 710 (2012), pp. 324-361 | DOI | MR | Zbl

[2] Adim, Mahieddine Approximating a continuously stratified hydrostatic system by the multi-layer shallow water system, Asymptotic Anal. (2024), 54 pages (pre-press) | DOI

[3] Adim, Mahieddine Modèles continument stratifiés et systèmes multi-couches pour les écoulements géophysiques, Ph. D. Thesis, Univ. Rennes (2024)

[4] Azérad, Pascal; Guillén, Francisco Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 847-859 | DOI | MR | Zbl

[5] Amick, C. J.; Turner, R. E. L. A global theory of internal solitary waves in two-fluid systems, Trans. Am. Math. Soc., Volume 298 (1986) no. 2, pp. 431-484 | DOI | MR | Zbl

[6] Barros, Ricardo; Choi, Wooyoung On the hyperbolicity of two-layer flows, Frontiers of applied and computational mathematics, World Scientific, 2008, pp. 95-103 | DOI | MR | Zbl

[7] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR | Zbl

[8] Bianchini, Roberta; Coti Zelati, Michele; Ertzbischoff, Lucas Ill-posedness of the hydrostatic Euler-Boussinesq equations and failure of hydrostatic limit (2024) (https://arxiv.org/abs/2403.17857)

[9] Bresch, Didier; Desjardins, Benoît Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1-2, pp. 211-223 | DOI | MR | Zbl

[10] Bresch, Didier; Desjardins, Benoît Some diffusive capillary models of Korteweg type, C. R. Méc. Acad. Sci. Paris, Volume 332 (2004) no. 11, pp. 881-886 | DOI | Zbl

[11] Bianchini, Roberta; Duchêne, Vincent On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity, Commun. Partial Differ. Equations, Volume 49 (2024) no. 5-6, pp. 543-608 | DOI | MR | Zbl

[12] Bresch, Didier; Desjardins, Benoît; Lin, Chi-Kun On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR | Zbl

[13] Bresch, Didier; Desjardins, Benoît; Zatorska, Ewelina Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global κ-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl., Volume 104 (2015) no. 4, pp. 801-836 | DOI | MR | Zbl

[14] Bogucki, Darek; Garrett, Chris A simple model for the shear-induced decay of an internal solitary wave, J. Phys. Oceanogr., Volume 23 (1993) no. 8, pp. 1767-1776 | DOI

[15] Benzoni-Gavage, Sylvie; Serre, Denis Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007, xxvi+508 pages | MR | Zbl

[16] Bona, Jerry L.; Lannes, David; Saut, Jean-Claude Asymptotic models for internal waves, J. Math. Pures Appl., Volume 89 (2008) no. 6, pp. 538-566 | DOI | MR | Zbl

[17] Bresch, Didier; Noble, Pascal Mathematical justification of a shallow water model, Methods Appl. Anal., Volume 14 (2007) no. 2, pp. 87-117 | DOI | MR | Zbl

[18] Brenier, Yann Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999) no. 3, pp. 495-512 | DOI | MR | Zbl

[19] Camassa, R.; Tiron, R. Optimal two-layer approximation for continuous density stratification, J. Fluid Mech., Volume 669 (2011), pp. 32-54 | DOI | MR | Zbl

[20] Desjardins, Benoît; Lannes, David; Saut, Jean-Claude Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids, Water Waves, Volume 3 (2021) no. 1, pp. 153-192 | DOI | MR | Zbl

[21] Duchêne, Vincent Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., Volume 42 (2010) no. 5, pp. 2229-2260 | DOI | MR | Zbl

[22] Duchêne, Vincent A note on the well-posedness of the one-dimensional multilayer shallow water model (2013) (https://hal.science/hal-00922045)

[23] Duchêne, Vincent Many Models for Water Waves (2021) (https://www.ams.org/open-math-notes/omn-view-listing?listingId=111309)

[24] Furukawa, Ken; Giga, Yoshikazu; Hieber, Matthias; Hussein, Amru; Kashiwabara, Takahito; Wrona, Marc Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations, Nonlinearity, Volume 33 (2020) no. 12, pp. 6502-6516 | DOI | MR | Zbl

[25] Fradin, Théo Well-posedness of the Euler equations in a stably stratified ocean in isopycnal coordinates (2024) (https://arxiv.org/abs/2406.13263)

[26] Gent, Peter R. The energetically consistent shallow-water equations, J. Atmos. Sci., Volume 50 (1993) no. 9, pp. 1323-1325 | DOI

[27] Gill, Adrian E. Atmosphere – ocean dynamics, International Geophysics Series, 30, Academic Press Inc., 1982

[28] Grue, John; Jensen, Atle; Rusås, Per-Olav; Sveen, J. Kristian Properties of large-amplitude internal waves, J. Fluid Mech., Volume 380 (1999), pp. 257-278 | DOI | MR | Zbl

[29] Gent, Peter R.; McWilliams, J. C. Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., Volume 20 (1990) no. 1, pp. 150-155 | DOI

[30] Gerbeau, J.-F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst., Ser. B, Volume 1 (2001) no. 1, pp. 89-102 | DOI | MR | Zbl

[31] Grenier, Emmanuel On the derivation of homogeneous hydrostatic equations, M2AN, Math. Model. Numer. Anal., Volume 33 (1999) no. 5, pp. 965-970 | DOI | MR | Zbl

[32] Howard, Louis N. Note on a paper of John W. Miles, J. Fluid Mech., Volume 10 (1961), pp. 509-512 | DOI | MR | Zbl

[33] James, Guillaume Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 1, pp. 41-90 | DOI | MR | Zbl

[34] Kato, Tosio Perturbation theory for linear operators, Classics in Mathematics, Springer, 1995, xxii+619 pages | MR | Zbl | DOI

[35] Kamotski, V.; Lebeau, G. On 2D Rayleigh-Taylor instabilities, Asymptotic Anal., Volume 42 (2005) no. 1-2, pp. 1-27 | DOI | MR | Zbl

[36] Kukavica, Igor; Temam, Roger; Vicol, Vlad C.; Ziane, Mohammed Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differ. Equations, Volume 250 (2011) no. 3, pp. 1719-1746 | DOI | MR | Zbl

[37] Lannes, David A Stability Criterion for Two-Fluid Interfaces and Applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481-567 | DOI | MR | Zbl

[38] Lannes, David The water waves problem. Mathematical analysis and asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013, xx+321 pages | DOI | MR | Zbl

[39] Li, Jinkai; Titi, Edriss S. The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl., Volume 124 (2019), pp. 30-58 | DOI | MR | Zbl

[40] Li, Jinkai; Titi, Edriss S.; Yuan, Guozhi The primitive equations approximation of the anisotropic horizontally viscous 3D Navier-Stokes equations, J. Differ. Equations, Volume 306 (2022), pp. 492-524 | MR | Zbl | DOI

[41] Miles, John W. On the stability of heterogeneous shear flows, J. Fluid Mech., Volume 10 (1961), pp. 496-508 | DOI | MR | Zbl

[42] Masmoudi, Nader; Wong, Tak Kwong On the H s theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012) no. 1, pp. 231-271 | DOI | MR | Zbl

[43] Ovsjannikov, L. V. Models of two-layered “shallow water”, Zh. Prikl. Mekh. i Tekhn. Fiz., Volume 2 (1979), pp. 3-14 | MR

[44] Pu, Xueke; Zhou, Wenli On the rigorous mathematical derivation for the viscous primitive equations with density stratification, Acta Math. Sci., Ser. B, Engl. Ed., Volume 43 (2023) no. 3, pp. 1081-1104 | DOI | MR | Zbl

[45] Pu, Xueke; Zhou, Wenli Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation, Bull. Malays. Math. Sci. Soc., Volume 46 (2023) no. 3, 88, 23 pages | DOI | MR | Zbl

[46] Teshukov, V. M. On Cauchy problem for long wave equations, Free boundary problems in continuum mechanics (Novosibirsk, 1991) (ISNM. International Series of Numerical Mathematics), Volume 106, Birkhäuser, 1992, pp. 331-338 | MR | Zbl | DOI

[47] Turner, R. E. L. Internal waves in fluids with rapidly varying density, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981) no. 4, pp. 513-573 | MR | Zbl | Numdam

[48] Viríssimo, Francisco de Melo; Milewski, Paul A. Nonlinear stability of two-layer shallow water flows with a free surface, Proc. R. Soc. Lond., Ser. A, Volume 476 (2020) no. 2236, 20190594, 20 pages | DOI | MR | Zbl

[49] White, Brian L.; Helfrich, Karl R. A model for internal bores in continuous stratification, J. Fluid Mech., Volume 761 (2014), pp. 282-304 | DOI | MR

Cité par Sources :