Article de recherche - Algèbre
Bialgebra cohomology and exact sequences
[Cohomologie de bigèbres et suites exactes]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1475-1483

We show how the bialgebra cohomologies of two Hopf algebras involved in an exact sequence are related, when the third factor is finite-dimensional cosemisimple. As an application, we provide a short proof of the computation of the bialgebra cohomology of the universal cosovereign Hopf algebras in the generic (cosemisimple) case, done recently by Baraquin, Franz, Gerhold, Kula and Tobolski.

Nous montrons comment les cohomologies de Gertstenhaber–Schack de deux algèbres de Hopf imbriquées dans une suite exacte courte sont reliées, quand le troisième facteur est cosemisimple de dimension finie. Nous en déduisons une preuve rapide du calcul de la cohomologie de bigèbre des algèbres de Hopf cosouveraines universelles dans le cas générique, établi récemment par Baraquin, Franz, Gerhold, Kula et Tobolski.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.659
Classification : 16T05, 16E40
Keywords: Hopf algebras, bialgebra cohomology, Yetter–Drinfeld modules
Mots-clés : Algèbres de Hopf, cohomologie des bigèbres, modules de Yetter–Drinfeld

Bichon, Julien  1

1 Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1475_0,
     author = {Bichon, Julien},
     title = {Bialgebra cohomology and exact sequences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1475--1483},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.659},
     zbl = {07945489},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.659/}
}
TY  - JOUR
AU  - Bichon, Julien
TI  - Bialgebra cohomology and exact sequences
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1475
EP  - 1483
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.659/
DO  - 10.5802/crmath.659
LA  - en
ID  - CRMATH_2024__362_G11_1475_0
ER  - 
%0 Journal Article
%A Bichon, Julien
%T Bialgebra cohomology and exact sequences
%J Comptes Rendus. Mathématique
%D 2024
%P 1475-1483
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.659/
%R 10.5802/crmath.659
%G en
%F CRMATH_2024__362_G11_1475_0
Bichon, Julien. Bialgebra cohomology and exact sequences. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1475-1483. doi: 10.5802/crmath.659

[2] Banica, Teodor Le groupe quantique compact libre U(n), Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl

[3] Baraquin, Isabelle; Franz, Uwe; Gerhold, Malte; Kula, Anna; Tobolski, Mariusz Free resolutions for free unitary quantum groups and universal cosovereign Hopf algebras, J. Lond. Math. Soc., Volume 109 (2024) no. 4, e12898, 50 pages | DOI | MR | Zbl

[4] Bichon, Julien The representation category of the quantum group of a non-degenerate bilinear form, Commun. Algebra, Volume 31 (2003) no. 10, pp. 4831-4851 | DOI | MR | Zbl

[5] Bichon, Julien Co-representation theory of universal co-sovereign Hopf algebras, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 83-98 | Zbl | DOI | MR

[6] Bichon, Julien Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolutions of the counit, Compos. Math., Volume 149 (2013) no. 4, pp. 658-678 | DOI | MR | Zbl

[7] Bichon, Julien Hopf–Galois objects and cogroupoids, Rev. Unión Mat. Argent., Volume 55 (2014) no. 2, pp. 11-69 | MR | Zbl

[8] Bichon, Julien Gerstenhaber–Schack and Hochschild cohomologiesof Hopf algebras, Doc. Math., Volume 21 (2016), pp. 955-986 | DOI | MR | Zbl

[9] Bichon, Julien Cohomological dimensions of universal cosovereign Hopfalgebras, Publ. Mat., Volume 62 (2018) no. 2, pp. 301-330 | DOI | MR | Zbl

[10] Bichon, Julien On the monoidal invariance of the cohomological dimensionof Hopf algebras, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 561-582 | DOI | MR | Zbl

[11] Bichon, Julien; Neshveyev, Sergey; Yamashita, Makoto Graded twisting of categories and quantum groups by group actions, Ann. Inst. Fourier, Volume 66 (2016) no. 6, pp. 2299-2338 | Numdam | DOI | MR | Zbl

[12] Chirvasitu, Alexandru Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras, Algebra Number Theory, Volume 8 (2014) no. 5, pp. 1179-1199 | DOI | MR | Zbl

[13] Caenepeel, Stefaan; Militaru, Gigel; Zhu, Shenglin Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Mathematics, 1787, Springer, 2002, xiv+354 pages | DOI | MR | Zbl

[14] Caenepeel, Stefaan; Militaru, Gigel; Zhu, Shenglin Crossed modules and Doi–Hopf modules, Isr. J. Math., Volume 100 (1997), pp. 221-247 | DOI | MR | Zbl

[15] Dubois-Violette, Michel; Launer, Guy The quantum group of a nondegenerate bilinear form, Phys. Lett. B, Volume 245 (1990) no. 2, pp. 175-177 | DOI | MR | Zbl

[16] Etingof, Pavel; Gelaki, Shlomo On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Int. Math. Res. Not., Volume 1998 (1998) no. 16, pp. 851-864 | DOI | MR | Zbl

[17] Gerstenhaber, Murray; Schack, Samuel D. Bialgebra cohomology, deformations, and quantum groups, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 1, pp. 478-481 | DOI | MR | Zbl

[18] Gerstenhaber, Murray; Schack, Samuel D. Algebras, bialgebras, quantum groups, and algebraic deformations, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 51-92 | DOI | MR | Zbl

[19] Heckenberger, István; Schneider, Hans-Jürgen Hopf algebras and root systems, Mathematical Surveys and Monographs, 247, American Mathematical Society, 2020, xix+582 pages | DOI | MR

[20] Hilton, Peter John; Stammbach, Urs A course in homological algebra, Graduate Texts in Mathematics, 4, Springer, 1971, ix+338 pages | DOI | MR | Zbl

[21] Montgomery, Susan Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, 1993, xiv+238 pages | DOI | MR | Zbl

[22] Parshall, Brian; Wang, Jian Pan On bialgebra cohomology, Bull. Soc. Math. Belg. Sér. A, Volume 42 (1990) no. 3, pp. 607-642 | MR | Zbl

[23] Schauenburg, Peter Hopf modules and Yetter–Drinfelʼd modules, J. Algebra, Volume 169 (1994) no. 3, pp. 874-890 | DOI | MR | Zbl

[24] Shnider, Steven; Sternberg, Shlomo Quantum groups. From coalgebras to Drinfelʼd algebras. A guided tour, Graduate Texts in Mathematical Physics, II, International Press, 1993, xxii+496 pages | MR | Zbl

[25] Taillefer, Rachel Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product, J. Algebra, Volume 276 (2004) no. 1, pp. 259-279 | DOI | MR | Zbl

[26] Takeuchi, Mitsuhiro Relative Hopf modules – equivalences and freeness criteria, J. Algebra, Volume 60 (1979) no. 2, pp. 452-471 | DOI | MR | Zbl

[27] Tarrago, Pierre; Weber, Moritz Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not., Volume 2017 (2017) no. 18, pp. 5710-5750 | DOI | MR | Zbl

[28] Van Daele, Alfons; Wang, Shuzhou Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl

[29] Ştefan, Dragoş The set of types of n-dimensional semisimple and cosemisimple Hopf algebras is finite, J. Algebra, Volume 193 (1997) no. 2, pp. 571-580 | DOI | MR | Zbl

Cité par Sources :