Article de recherche - Statistiques
Gaussian mixtures closest to a given measure via optimal transport
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1455-1473

Given a determinate (multivariate) probability measure μ, we characterize Gaussian mixtures ν ϕ which minimize the Wasserstein distance W 2 (μ,ν ϕ ) to μ when the mixing probability measure ϕ on the parameters (m,Σ) of the Gaussians is supported on a compact set S. (i) We first show that such mixtures are optimal solutions of a particular optimal transport (OT) problem where the marginal ν ϕ of the OT problem is also unknown via the mixing measure variable ϕ. Next (ii) by using a well-known specific property of Gaussian measures, this optimal transport is then viewed as a Generalized Moment Problem (GMP) and if the set S of mixture parameters (m,Σ) is a basic compact semi-algebraic set, we provide a “mesh-free” numerical scheme to approximate as closely as desired the optimal distance by solving a hierarchy of semidefinite relaxations of increasing size. In particular, we neither assume that the mixing measure is finitely supported nor that the variance is the same for all components. If the original measure μ is not a Gaussian mixture with parameters (m,Σ)S, then a strictly positive distance is detected at a finite step of the hierarchy. If the original measure μ is a Gaussian mixture with parameters (m,Σ)S, then all semidefinite relaxations of the hierarchy have same zero optimal value. Moreover if the mixing measure is atomic with finite support, its components can sometimes be extracted from an optimal solution at some semidefinite relaxation of the hierarchy when Curto & Fialkow’s flatness condition holds for some moment matrix.

Étant donné une mesure de probabilité (multivariée) μ nous caractérisons les mélanges de Gaussiennes ν ϕ qui minimisent la distance de Wasserstein W 2 (μ,ν ϕ ) quand la probabilité de mélange est sur un compact S. (i) On montre d’abord que de telles probabilités de mélange sont solutions optimales d’un problème de transport où la marginale (ν ϕ ) est elle-même une inconnue via la probabilité de mélange ϕ. (ii) Ensuite en utilisant une propriété bien connue des Gaussiennes, ce problème de transport est lui-même vu comme un problème de moments généralisé. Si l’ensemble S des paramètres admissibles est un semi-algébrique de base compact, alors on fournit un schéma numérique sans grille de discrétisation (la hiérarchie «  moments – sommes-de-carrés  »), pour approximer arbitrairement près la distance minimum optimale. Si la mesure μ n’est pas un mélange de Gaussiennes (avec paramètres dans S) alors une distance strictement positive est détectée à une certaine relaxation de la hiérarchie. Si μ est un mélange (fini) de Gaussiennes, alors une mesure de mélange atomique peut parfois être extraite de la solution optimale d’une relaxation quand la condition de «  flatness  » de Curto& Fiakow est satisfaite pour une matrice de moments.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.657
Classification : 42C05, 47B32, 33C47, 90C23, 90C46
Keywords: Gaussian mixtures, Wasserstein distance, semidefinite relaxations, Moment-SOS hierarchy
Mots-clés : Mélanges de Gaussiennes, distance de Wasserstein, relaxations semidéfinies, hiérarchie moments-sommes-de-carrés

Lasserre, Jean B.  1

1 LAAS-CNRS and Toulouse School of Economics (TSE), BP 54200, 7 Avenue du Colonel Roche, 31031 Toulouse cédex 4, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1455_0,
     author = {Lasserre, Jean B.},
     title = {Gaussian mixtures closest to a given measure via optimal transport},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1455--1473},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.657},
     zbl = {07945488},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.657/}
}
TY  - JOUR
AU  - Lasserre, Jean B.
TI  - Gaussian mixtures closest to a given measure via optimal transport
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1455
EP  - 1473
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.657/
DO  - 10.5802/crmath.657
LA  - en
ID  - CRMATH_2024__362_G11_1455_0
ER  - 
%0 Journal Article
%A Lasserre, Jean B.
%T Gaussian mixtures closest to a given measure via optimal transport
%J Comptes Rendus. Mathématique
%D 2024
%P 1455-1473
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.657/
%R 10.5802/crmath.657
%G en
%F CRMATH_2024__362_G11_1455_0
Lasserre, Jean B. Gaussian mixtures closest to a given measure via optimal transport. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1455-1473. doi: 10.5802/crmath.657

[1] Améndola, Carlos; Faugère, Jean-Charles; Sturmfels, Bernd Moment varieties of Gaussian mixtures, J. Algebr. Stat., Volume 7 (2016) no. 1, pp. 14-28 | DOI | MR | Zbl

[2] Handbook on semidefinite, conic and polynomial optimization (Anjos, Miguel F.; Lasserre, Jean B., eds.), International Series in Operations Research & Management Science, 166, Springer, 2012, xii+960 pages | DOI | MR | Zbl

[3] Améndola, Carlos; Ranestad, Kristian; Sturmfels, Bernd Algebraic identifiability of Gaussian mixtures, Int. Math. Res. Not., Volume 2018 (2018) no. 21, pp. 6556-6580 | DOI | MR | Zbl

[4] Bin, Xing; Bunea, F.; Niles-Wred, J. Estimation and inference for the Wasserstein distance between mixing measures in topic models (2023) (https://arxiv.org/abs/2206.12768)

[5] Bakshi, Ainesh; Diakonikolas, Ilias; Jia, He; Kane, Daniel M.; Kothari, Pravesh K.; Vempala, Santosh S. Robustly learning mixtures of k arbitrary Gaussians, STOC ’22—Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, Association for Computing Machinery (2022), pp. 1234-1247 | DOI | MR | Zbl

[6] Dunkl, Charles F.; Xu, Yuan Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, 2001, xvi+390 pages | DOI | MR | Zbl

[7] Di Zio, Marco; Guarnera, Ugo; Rocci, Roberto A mixture of mixture models for a classification problem: the unity measure error, Comput. Stat. Data Anal., Volume 51 (2007) no. 5, pp. 2573-2585 | DOI | MR | Zbl

[8] Heinrich, Philippe; Kahn, Jonas Strong identifiability and optimal minimax rates for finite mixture estimation, Ann. Stat., Volume 46 (2018) no. 6A, pp. 2844-2870 | DOI | MR | Zbl

[9] Henrion, Didier; Korda, Milan; Lasserre, Jean B. The moment-SOS hierarchy—lectures in probability, statistics, computational geometry, control and nonlinear PDEs, Series on Optimization and its Applications, 4, World Scientific, 2021, xvii+229 pages | MR | Zbl

[10] Henrion, Didier; Lasserre, Jean B.; Löfberg, Johan GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., Volume 24 (2009) no. 4-5, pp. 761-779 | DOI | MR | Zbl

[11] Kalai, Adam Tauman; Moitra, Ankur; Valiant, Gregory Efficiently learning mixtures of two Gaussians, STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, Association for Computing Machinery (2010), pp. 553-562 | DOI | MR | Zbl

[12] Kothari, Pravesh K.; Manohar, Peter; Zhang, Brian Hu Polynomial-time sum-of-squares can robustly estimate mean and covariance of Gaussians optimally, Proceedings of The 33rd International Conference on Algorithmic Learning Theory (Dasgupta, Sanjoy; Haghtalab, Nika, eds.) (Proceedings of Machine Learning Research), Volume 167, PMLR (2022), pp. 638-667 | MR

[13] Lasserre, Jean B. Moments, positive polynomials and their applications, Imperial College Press Optimization Series, 1, Imperial College Press, 2010, xxii+361 pages | MR | Zbl

[14] Lasserre, Jean B. The existence of Gaussian cubature formulas, J. Approx. Theory, Volume 164 (2012) no. 5, pp. 572-585 | DOI | MR | Zbl

[15] Lasserre, Jean B. An introduction to polynomial and semi-algebraic optimization, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2015, xiv+339 pages | DOI | MR | Zbl

[16] Lindsay, Bruce G. Moment matrices: applications in mixtures, Ann. Stat., Volume 17 (1989) no. 2, pp. 722-740 | DOI | MR | Zbl

[17] McLachlan, Geoffrey; Peel, David Finite mixture models, Wiley Ser. Probab. Math. Stat., John Wiley & Sons, 2000 | DOI | Zbl | MR

[18] Moitra, Ankur; Valiant, Gregory Settling the polynomial learnability of mixtures of Gaussians, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Society (2010), pp. 93-102 | DOI | MR

[19] Marron, J. S.; Wand, M. P. Exact mean integrated squared error, Ann. Stat., Volume 20 (1992) no. 2, pp. 712-736 | DOI | MR | Zbl

[20] Möller, H. Michael On square positive extensions and cubature formulas, J. Comput. Appl. Math., Volume 199 (2007) no. 1, pp. 80-88 | DOI | MR | Zbl

[21] Nguyen, XuanLong Convergence of latent mixing measures in finite and infinite mixture models, Ann. Stat., Volume 41 (2013) no. 1, pp. 370-400 | DOI | MR | Zbl

[22] O’Donnell, Ryan SOS is not obviously automatizable, even approximately, 8th Innovations in Theoretical Computer Science Conference (LIPIcs. Leibniz Int. Proc. Inform.), Volume 67, Schloss Dagstuhl. Leibniz-Zent. Inform., 2017 (No. 59, 10 pages) | DOI | MR | Zbl

[23] Permuter, Haim; Francos, Joseph; Jermyn, Ian A study of Gaussian mixture models of color and texture features for image classification and segmentation, Pattern Recognition, Volume 39 (2006) no. 4, pp. 695-706 | DOI | Zbl

[24] Putinar, Mihai Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 969-984 | DOI | MR | Zbl

[25] Wang, Jin Generating daily changes in market variables using a multivariate mixture of normal distributions, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304) (2001), pp. 283-289 | DOI

[26] Wu, Yihong; Yang, Pengkun Optimal estimation of Gaussian mixtures via denoised method of moments, Ann. Stat., Volume 48 (2020) no. 4, pp. 1981-2007 | DOI | MR | Zbl

[27] Yu, Guoshen; Sapiro, Guillermo; Mallat, Stéphane Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Trans. Image Process., Volume 21 (2012) no. 5, pp. 2481-2499 | DOI | MR | Zbl

Cité par Sources :