Article de recherche - Équations aux dérivées partielles
Compensated integrability on tori; a priori estimate for space-periodic gas flows
[Intégrabilité par compensation sur un tore ; Estimation a priori pour les écoulements gazeux périodiques en espace]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1425-1444

We extend our theory of Compensated Integrability of positive symmetric tensors, to the case where the domain is the product of a linear space k and of a torus m /Λ, Λ being a lattice of m . We apply our abstract results in two contexts, for which k=1 is associated with a time variable, while m=d is a space dimension. On the one hand to d-dimensional inviscid gas dynamics, governed by the Euler equations, when the initial data is space-periodic; we obtain an a priori space-time estimate of our beloved quantity ρ 1 d p. On the other hand to hard spheres dynamics in a periodic box L𝕋 d . We obtain a weighted estimate of the average number of collisions per unit time, provided that the “linear density” Na/L (N particles of radius a) is smaller than some threshold.

Nous étendons notre théorie d’Intégrabilité par Compensation au cas des domaines k ×( m /Λ), produits d’un facteur linéaire et d’un tore plat. Nous appliquons les résultats abstraits à deux contextes, pour lesquels k=1 est associé à une variable de temps, tandis que m=d est la dimension de l’espace physique ambiant. Le premier est la dynamique des gaz non visqueux, gouvernée par les équations d’Euler, lorsque les données initiales sont périodiques en espace. Nous obtenons une estimation a priori de notre quantité favorite ρ 1 d p. Le second est la dynamique des sphères dures, dans une boîte périodique L𝕋 d . Nous obtenons une estimation pondérée du nombre moyen de collisions par unité de temps, pourvu que la «  densité linéique  » Na/L (N particules de rayon a) soit inférieure à un certain seuil.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.654
Classification : 35B09, 35B45, 76N15, 37C83
Keywords: Compensated integrability, perfect gas, billiard, periodic data
Mots-clés : Intégrabilité par compensation, gaz parfait, billard, données périodiques

Serre, Denis  1

1 École Normale Supérieure de Lyon, U.M.P.A., UMR CNRS–ENSL # 5669. 46 allée d’Italie, 69364 Lyon cedex 07. France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1425_0,
     author = {Serre, Denis},
     title = {Compensated integrability on tori; \protect\emph{a priori} estimate for space-periodic gas flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1425--1444},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.654},
     zbl = {07945485},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.654/}
}
TY  - JOUR
AU  - Serre, Denis
TI  - Compensated integrability on tori; a priori estimate for space-periodic gas flows
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1425
EP  - 1444
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.654/
DO  - 10.5802/crmath.654
LA  - en
ID  - CRMATH_2024__362_G11_1425_0
ER  - 
%0 Journal Article
%A Serre, Denis
%T Compensated integrability on tori; a priori estimate for space-periodic gas flows
%J Comptes Rendus. Mathématique
%D 2024
%P 1425-1444
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.654/
%R 10.5802/crmath.654
%G en
%F CRMATH_2024__362_G11_1425_0
Serre, Denis. Compensated integrability on tori; a priori estimate for space-periodic gas flows. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1425-1444. doi: 10.5802/crmath.654

[1] Alexander, R. K. The infinite hard sphere system, M.S. Thesis, University of California at Berkeley

[2] Arroyo-Rabasa, Adolfo; De Philippis, Guido; Hirsch, Jonas; Rindler, Filip Dimensional estimates and rectifiability for measures satisfying linear PDE constraints, Geom. Funct. Anal., Volume 29 (2019) no. 3, pp. 639-658 | DOI | MR | Zbl

[3] Burago, D.; Ferleger, S.; Kononenko, A. Uniform estimates on the number of collisions in semi-dispersing billiards, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 695-708 | DOI | MR | Zbl

[4] Burago, Dmitri; Ivanov, Sergei Examples of exponentially many collisions in a hard ball system, Ergodic Theory Dyn. Syst., Volume 41 (2021) no. 9, pp. 2754-2769 | DOI | MR | Zbl

[5] Burdzy, Krzysztof An improved upper bound on the number of billiard ball collisions, Comm. Math. Phys., Volume 391 (2022) no. 1, pp. 107-117 | DOI | MR | Zbl

[6] John, Fritz Extremum problems with inequalities as subsidiary conditions, Traces and emergence of nonlinear programming (Giorgi, T. G. ane Kjeldsen, ed.), Birkhäuser/Springer Basel AG, Basel, 2014, pp. 198-215 | MR | Zbl

[7] Li, Yan Yan Some existence results for fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math., Volume 43 (1990) no. 2, pp. 233-271 | DOI | MR | Zbl

[8] Pogorelov, Aleksey V. The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press (John Wiley & Sons), New York-Toronto-London, 1978, 106 pages | MR | Zbl

[9] Serre, Denis Matrices, Graduate Texts in Mathematics, 216, Springer, New York, 2010, xiv+289 pages (Theory and applications) | DOI | MR | Zbl

[10] Serre, Denis Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1209-1234 | DOI | MR | Zbl | Numdam

[11] Serre, Denis Compensated integrability. Applications to the Vlasov–Poisson equation and other models in mathematical physics, J. Math. Pures Appl. (9), Volume 127 (2019), pp. 67-88 | DOI | MR | Zbl

[12] Serre, Denis Hard spheres dynamics: weak vs strong collisions, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 243-264 | DOI | MR | Zbl

[13] Serre, Denis Divergence-free tensors and cofactors in geometry and fluid dynamics, Mathematics going forward—collected mathematical brushstrokes (Lecture Notes in Math.), Volume 2313, Springer, Cham, 2023, pp. 461-477 | DOI | MR | Zbl

[14] Sinai, Yakov G. Hyperbolic billiards, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo (1991), pp. 249-260 | MR | Zbl

[15] Vaserstein, L. N. On systems of particles with finite-range and/or repulsive interactions, Comm. Math. Phys., Volume 69 (1979) no. 1, pp. 31-56 | MR | DOI

Cité par Sources :