Article de recherche - Équations aux dérivées partielles
Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
[Quelques propriétés qualitatives des équations de Lichnerowicz et de Ginzburg–Landau sur les graphes localement finis]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1413-1423

Let (V,E) be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation

v t -Δv=v -p-2 -v p ,(x,t)V×,

and of (sign-changing) solutions of the Ginzburg-Landau system

u t -Δu=u-u 3 -λuv 2 ,(x,t)V×,v t -Δv=v-v 3 -λvu 2 ,(x,t)V×,

where p>0, λ>0 and Δ is the standard discrete graph Laplacian. Firstly, we prove that any positive solution v of the Lichnerowicz equation satisfies v1. Moreover, if we assume the boundedness of positive solution v, then it must be trivial, i.e v1. We also construct a nontrivial positive solution of the Lichnerowicz equation to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions of the Ginzburg-Landau system depending on the range of λ.

Soit (V,E) un graphe pondéré localement fini. Nous étudions certaines propriétés qualitatives des solutions positives de l’équation de Lichnerowicz

v t -Δv=v -p-2 -v p ,(x,t)V×,

et des solutions (avec changement de signe) du système de Ginzburg-Landau

u t -Δu=u-u 3 -λuv 2 ,(x,t)V×,v t -Δv=v-v 3 -λvu 2 ,(x,t)V×,

p>0, λ>0 et Δ est le laplacien discret standard des graphes. Tout d’abord, nous prouvons que toutes les solutions positives de l’équation de Lichnerowicz satisfont à v1. De plus, si nous supposons qu’une solution positive v est bornée, alors elle doit être triviale, c’est-à-dire v1. Nous construisons également une solution positive non bornée de l’équation de Lichnerowicz. Deuxièmement, nous obtenons une majoration précise pour les solutions du système de Ginzburg-Landau en fonction de l’étendue λ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.653
Classification : 35B02, 35B45, 05C09
Keywords: Liouville-type theorems, Lichnerowicz equations, Ginzburg–Landau system, nonexistence results, qualitative property, locally finite graphs
Mots-clés : Théorèmes de type Liouville, équations de Lichnerowicz, système de Ginzburg–Landau, résultats de non-existence, propriété qualitative, graphes localement finis

Duong, Anh Tuan  1   ; Fujiié, Setsuro  2

1 Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam.
2 Department of Mathematical Sciences, Ritsumeikan University, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1413_0,
     author = {Duong, Anh Tuan and Fujii\'e, Setsuro},
     title = {Some qualitative properties of {Lichnerowicz} equations and {Ginzburg{\textendash}Landau} systems on locally finite graphs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1413--1423},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.653},
     zbl = {07945484},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.653/}
}
TY  - JOUR
AU  - Duong, Anh Tuan
AU  - Fujiié, Setsuro
TI  - Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1413
EP  - 1423
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.653/
DO  - 10.5802/crmath.653
LA  - en
ID  - CRMATH_2024__362_G11_1413_0
ER  - 
%0 Journal Article
%A Duong, Anh Tuan
%A Fujiié, Setsuro
%T Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs
%J Comptes Rendus. Mathématique
%D 2024
%P 1413-1423
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.653/
%R 10.5802/crmath.653
%G en
%F CRMATH_2024__362_G11_1413_0
Duong, Anh Tuan; Fujiié, Setsuro. Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1413-1423. doi: 10.5802/crmath.653

[1] Brezis, Haïm Comments on two notes by L. Ma and X. Xu [MR2721787; MR2543987], C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5-6, pp. 269-271 | DOI | MR | Zbl

[2] Duong, Anh Tuan; Nguyen, Van Hoang; Nguyen, Thi Quynh Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations, Bull. Aust. Math. Soc., Volume 104 (2021) no. 3, pp. 484-492 | DOI | MR | Zbl

[3] Farina, Alberto; Sciunzi, Berardino; Soave, Nicola Monotonicity and rigidity of solutions to some elliptic systems with uniform limits, Commun. Contemp. Math., Volume 22 (2020) no. 5, 1950044, 24 pages | DOI | MR | Zbl

[4] Ge, Huabin A p-th Yamabe equation on graph, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 2219-2224 | DOI | MR | Zbl

[5] Ge, Huabin; Hua, Bobo; Jiang, Wenfeng A note on Liouville type equations on graphs, Proc. Am. Math. Soc., Volume 146 (2018) no. 11, pp. 4837-4842 | DOI | MR | Zbl

[6] Gu, Qingsong; Huang, Xueping; Sun, Yuhua Semi-linear elliptic inequalities on weighted graphs, Calc. Var. Partial Differ. Equ., Volume 62 (2023) no. 2, 42, 14 pages | DOI | MR | Zbl

[7] Grigor’yan, Alexander; Lin, Yong; Yang, Yunyan Kazdan–Warner equation on graph, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 92, 13 pages | DOI | MR | Zbl

[8] Grigor’yan, Alexander; Lin, Yong; Yang, Yunyan Yamabe type equations on graphs, J. Differ. Equations, Volume 261 (2016) no. 9, pp. 4924-4943 | DOI | MR | Zbl

[9] Grigor’yan, Alexander Introduction to analysis on graphs, University Lecture Series, 71, American Mathematical Society, 2018, viii+150 pages | DOI | MR | Zbl

[10] Hua, Bobo; Li, Ruowei The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differ. Equations, Volume 305 (2021), pp. 224-241 | DOI | MR | Zbl

[11] Han, Xiaoli; Shao, Mengqiu p-Laplacian equations on locally finite graphs, Acta Math. Sin., Engl. Ser., Volume 37 (2021) no. 11, pp. 1645-1678 | DOI | MR | Zbl

[12] Han, Xiaoli; Shao, Mengqiu; Zhao, Liang Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equations, Volume 268 (2020) no. 7, pp. 3936-3961 | DOI | MR | Zbl

[13] Imbesi, Maurizio; Bisci, Giovanni Molica; Repovš, Dušan D. Elliptic problems on weighted locally finite graphs, Topol. Methods Nonlinear Anal., Volume 61 (2023) no. 1, pp. 501-526 | DOI | MR | Zbl

[14] Liu, Yang Nonexistence of global solutions for a class of nonlinear parabolic equations on graphs, Bull. Malays. Math. Sci. Soc., Volume 46 (2023) no. 6, 189, 22 pages | DOI | MR | Zbl

[15] Lin, Yong; Wu, Yiting The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4, 102, 22 pages | DOI | MR | Zbl

[16] Lin, Yong; Wu, Yiting Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Math. Sci., Ser. B, Engl. Ed., Volume 38 (2018) no. 3, pp. 843-856 | DOI | MR | Zbl

[17] Liu, Shuang; Yang, Yunyan Multiple solutions of Kazdan–Warner equation on graphs in the negative case, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 5, 164, 15 pages | DOI | MR | Zbl

[18] Liu, Chungen; Zuo, Li Positive solutions of Yamabe-type equations with function coefficients on graphs, J. Math. Anal. Appl., Volume 473 (2019) no. 2, pp. 1343-1357 | DOI | MR | Zbl

[19] Ma, Li Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 993-996 | Numdam | DOI | MR | Zbl

[20] Ma, Li Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Int. J. Math., Volume 27 (2016) no. 5, 1650048, 6 pages | MR | Zbl | DOI

[21] Minh, N. C.; Duong, A. T. Liouville type theorems for a system of elliptic inequalities on weighted graph (2023) (preprint)

[22] Ma, Li; Wang, XiangYang Kato’s inequality and Liouville theorems on locally finite graphs, Sci. China, Math., Volume 56 (2013) no. 4, pp. 771-776 | DOI | MR | Zbl

[23] Ma, Li; Xu, Xingwang Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 13-14, pp. 805-808 | DOI | MR | Zbl | Numdam

[24] Wu, Yiting Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, Volume 115 (2021) no. 3, 133, 16 pages | DOI | MR | Zbl

[25] Wu, Yiting Blow-up conditions for a semilinear parabolic system on locally finite graphs, Acta Math. Sci., Ser. B, Engl. Ed., Volume 44 (2024) no. 2, pp. 609-631 | DOI | MR | Zbl

Cité par Sources :