Article de recherche - Analyse fonctionnelle, Géométrie et Topologie
Maximal exponent of the Lorentz cones
[Exposant maximal des cônes de Lorentz]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1379-1388

We show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the n-dimensional Lorentz cone is equal to n. As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to 3.

Nous démontrons que l’exposant maximal (c’est-à-dire le nombre minimal d’itérations requises pour qu’une application primitive devienne strictement positive) du cône de Lorentz de dimension n est égal à n. Nous montrons également que l’exposant optimal dans l’inégalité de Wielandt quantique pour des canaux agissant sur un qubit est égal à 3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.649
Classification : 52A20, 51M04
Keywords: Lorentz cone, Maximal exponent, Quantum Wielandt inequality
Mots-clés : Cône de Lorentz, exposant maximal, inégalité de Wielandt quantique

Aubrun, Guillaume  1   ; Bai, Jing  2 , 1

1 Institut Camille Jordan, Université Claude Bernard Lyon 1, CNRS, INRIA, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
2 School of Mathematics, Harbin Institute of Technology, 92 West Dazhi Street, Nangang District, 150001 Harbin, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1379_0,
     author = {Aubrun, Guillaume and Bai, Jing},
     title = {Maximal exponent of the {Lorentz} cones},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1379--1388},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.649},
     zbl = {07945481},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.649/}
}
TY  - JOUR
AU  - Aubrun, Guillaume
AU  - Bai, Jing
TI  - Maximal exponent of the Lorentz cones
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1379
EP  - 1388
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.649/
DO  - 10.5802/crmath.649
LA  - en
ID  - CRMATH_2024__362_G11_1379_0
ER  - 
%0 Journal Article
%A Aubrun, Guillaume
%A Bai, Jing
%T Maximal exponent of the Lorentz cones
%J Comptes Rendus. Mathématique
%D 2024
%P 1379-1388
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.649/
%R 10.5802/crmath.649
%G en
%F CRMATH_2024__362_G11_1379_0
Aubrun, Guillaume; Bai, Jing. Maximal exponent of the Lorentz cones. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1379-1388. doi: 10.5802/crmath.649

[1] Aubrun, Guillaume; Szarek, Stanisł aw J. Alice and Bob meet Banach. The interface of asymptotic geometric analysis and quantum information theory, Mathematical Surveys and Monographs, 223, American Mathematical Society, 2017, xxi+414 pages | DOI | MR | Zbl

[2] Braun, Daniel; Giraud, Olivier; Nechita, Ion; Pellegrini, Clément; Žnidarič, Marko A universal set of qubit quantum channels, J. Phys. A. Math. Gen., Volume 47 (2014) no. 13, 135302, 26 pages | DOI | MR | Zbl

[3] Deimling, Klaus Nonlinear functional analysis, Springer, 1985, xiv+450 pages | DOI | MR | Zbl

[4] Horn, Roger A.; Johnson, Charles R. Matrix analysis, Cambridge University Press, 1990, xiv+561 pages (Corrected reprint of the 1985 original) | MR | Zbl

[5] Loewy, Raphael; Perles, Micha A.; Tam, Bit-Shun Maximal exponents of polyhedral cones (III), Trans. Am. Math. Soc., Volume 365 (2013) no. 7, pp. 3535-3573 | DOI | MR | Zbl

[6] Loewy, Raphael; Tam, Bit-Shun Maximal exponents of polyhedral cones. I, J. Math. Anal. Appl., Volume 365 (2010) no. 2, pp. 570-583 | DOI | MR | Zbl

[7] Loewy, Raphael; Tam, Bit-Shun Maximal exponents of polyhedral cones. II, Linear Algebra Appl., Volume 432 (2010) no. 11, pp. 2861-2878 | DOI | MR | Zbl

[8] Michał ek, Mateusz; Shitov, Yaroslav Quantum version of Wielandt’s inequality revisited, IEEE Trans. Inf. Theory, Volume 65 (2019) no. 8, pp. 5239-5242 | DOI | MR | Zbl

[9] Pták, Vlastimil Norms and the spectral radius of matrices, Czech. Math. J., Volume 12(87) (1962), pp. 555-557 | DOI | MR | Zbl

[10] Pták, Vlastimil Critical exponents, Handbook of convex geometry, Vol. A, B, North-Holland, 1993, pp. 1237-1257 | MR | Zbl | DOI

[11] Rahaman, Mizanur A new bound on quantum Wielandt inequality, IEEE Trans. Inf. Theory, Volume 66 (2020) no. 1, pp. 147-154 | DOI | MR | Zbl

[12] Ratcliffe, John G. Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer, 2019, xii+800 pages | DOI | MR | Zbl

[13] Schneider, Hans Wielandt’s proof of the exponent inequality for primitive nonnegative matrices, Linear Algebra Appl., Volume 353 (2002), pp. 5-10 | DOI | MR | Zbl

[14] Shitov, Yaroslav Growth in Matrix Algebras and a Conjecture of Pérez-García, Verstraete, Wolf and Cirac (2023) (https://vixra.org/abs/2308.0028)

[15] Sanz, Mikel; Pérez-García, David; Wolf, Michael M.; Cirac, Juan I. A quantum version of Wielandt’s inequality, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 9, pp. 4668-4673 | DOI | MR | Zbl

[16] Wielandt, Helmut Unzerlegbare, nicht negative Matrizen, Math. Z., Volume 52 (1950), pp. 642-648 | DOI | MR | Zbl

Cité par Sources :