Article de recherche - Informatique théorique
Consecutive Power Occurrences in Sturmian Words
[Occurrences consécutives de puissance dans les mots sturmiens]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1273-1278

We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by 10 and this bound is optimal, extending a result of Rampersad, who proved that the bound 9 holds for the Fibonacci word. We then give a general result showing that for every e[1,(5+5)/2) there is a natural number N, depending only on e, such that every Sturmian word has the property that the distance between consecutive ending positions of e-powers occurring in the word is uniformly bounded by N.

Nous montrons que la distance entre deux positions finales consécutives de cubes apparaissant dans un mot sturmien est toujours inférieure ou égale à 10 et que cette valeur est optimale, étendant ainsi un résultat de Rampersad, qui a démontré que cette distance est majorée par 9 pour le mot de Fibonacci. Nous donnons ensuite un résultat général montrant que pour tout e[1,(5+5)/2) il existe un entier naturel N, dépendant uniquement de e, tel que la distance entre deux positions finales consécutives de puissances e apparaissant dans un mot sturmien est uniformément majorée par N.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.644
Classification : 68R15
Keywords: Sturmian word, cube, periodicity, balanced word
Mots-clés : Mot Sturmien, cube, périodicité, mot équilibré

Bell, Jason  1   ; Schulz, Chris  1   ; Shallit, Jeffrey  2

1 University of Waterloo, Department of Pure Mathematics, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
2 University of Waterloo, School of Computer Science, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1273_0,
     author = {Bell, Jason and Schulz, Chris and Shallit, Jeffrey},
     title = {Consecutive {Power} {Occurrences} in {Sturmian} {Words}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1273--1278},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G10},
     doi = {10.5802/crmath.644},
     zbl = {07939458},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.644/}
}
TY  - JOUR
AU  - Bell, Jason
AU  - Schulz, Chris
AU  - Shallit, Jeffrey
TI  - Consecutive Power Occurrences in Sturmian Words
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1273
EP  - 1278
VL  - 362
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.644/
DO  - 10.5802/crmath.644
LA  - en
ID  - CRMATH_2024__362_G10_1273_0
ER  - 
%0 Journal Article
%A Bell, Jason
%A Schulz, Chris
%A Shallit, Jeffrey
%T Consecutive Power Occurrences in Sturmian Words
%J Comptes Rendus. Mathématique
%D 2024
%P 1273-1278
%V 362
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.644/
%R 10.5802/crmath.644
%G en
%F CRMATH_2024__362_G10_1273_0
Bell, Jason; Schulz, Chris; Shallit, Jeffrey. Consecutive Power Occurrences in Sturmian Words. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1273-1278. doi: 10.5802/crmath.644

[1] Baranwal, Aseem R. Decision Algorithms for Ostrowski-automatic Sequences, Memoir, University of Waterloo, School of Computer Science (2020)

[2] Berstel, Jean Fibonacci words—a survey, The Book of L (Rozenberg, G.; Salomaa, A., eds.), Springer, 1986, pp. 13-27 | Zbl | DOI

[3] Baranwal, Aseem R.; Shallit, Jeffrey Critical exponent of infinite balanced words via the Pell number system, Combinatorics on words (Lecture Notes in Computer Science), Volume 11682, Springer, 2019, pp. 80-92 | DOI | MR | Zbl

[4] Baranwal, Aseem R.; Schaeffer, Luke; Shallit, Jeffrey Ostrowski-automatic sequences: theory and applications, Theor. Comput. Sci., Volume 858 (2021), pp. 122-142 | DOI | MR | Zbl

[5] Damanik, David; Lenz, Daniel The index of Sturmian sequences, Eur. J. Comb., Volume 23 (2002) no. 1, pp. 23-29 | DOI | MR | Zbl

[6] Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | MR | Zbl | DOI

[7] Knuth, Donald E. The art of computer programming. Vol. 1. Fundamental algorithms, Addison-Wesley Publishing Group, 1997, xx+650 pages | MR | Zbl

[8] König, Denes Über eine Schlußweise aus dem Endlichen ins Unendliche, Acta Litt. Sci. Szeged, Volume 3 (1927), pp. 121-130 | Zbl

[9] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002, xiv+504 pages | DOI | MR | Zbl

[10] Mousavi, Hamoon Automatic theorem proving in Walnut (2016) (https://arxiv.org/abs/1603.06017)

[11] Mignosi, Filippo; Restivo, Antonio; Salemi, Sergio Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998) no. 1-2, pp. 153-167 | DOI | MR | Zbl

[12] Rampersad, Narad Prefixes of the Fibonacci word that end with a cube, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 323-332 | DOI | MR | Zbl

[13] Shallit, Jeffrey Prefixes of the Fibonacci word (2023) (https://arxiv.org/abs/2302.04640)

[14] Shallit, Jeffrey The logical approach to automatic sequences – exploring combinatorics on words with Walnut, London Mathematical Society Lecture Note Series, 482, Cambridge University Press, 2023, xv+358 pages | DOI | MR | Zbl

Cité par Sources :