[Estimations pour les équations non-locales de type chaleur et de type onde sur des groupes localement compacts]
We prove the norm estimates for the solutions of heat and wave type equations on a locally compact separable unimodular group by using an integro-differential operator in time and any positive left invariant operator (maybe unbounded) on . We complement our studies by giving asymptotic time estimates for the solutions, which in some cases are sharp.
On montre les estimations de norme pour les solutions des équations dites « de type chaleur » et « de type onde » définies sur un groupe localement compact, séparable et unimodulaire en utilisant un opérateur intégro-différentiel sur le temps et un opérateur positif invariant á gauche quelconque sur De plus, on donne des estimations de temps asymptotiques pour ces solutions, qui deviennent des estimations optimales dans quelques cas.
Accepté le :
Publié le :
DOI : 10.5802/crmath.643
Keywords: Locally compact groups, heat type equations, wave type equations, asymptotic estimates, non-local operators
Mots-clés : Groupes localement compacts, équations de type chaleur, équations de type onde, estimations asymptotiques, opérateurs non locaux
Gómez Cobos, Santiago  1 ; Restrepo, Joel E.  1 , 2 ; Ruzhansky, Michael  1 , 3
CC-BY 4.0
@article{CRMATH_2024__362_G11_1331_0,
author = {G\'omez Cobos, Santiago and Restrepo, Joel E. and Ruzhansky, Michael},
title = {$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups},
journal = {Comptes Rendus. Math\'ematique},
pages = {1331--1336},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G11},
doi = {10.5802/crmath.643},
zbl = {07945476},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.643/}
}
TY - JOUR AU - Gómez Cobos, Santiago AU - Restrepo, Joel E. AU - Ruzhansky, Michael TI - $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups JO - Comptes Rendus. Mathématique PY - 2024 SP - 1331 EP - 1336 VL - 362 IS - G11 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.643/ DO - 10.5802/crmath.643 LA - en ID - CRMATH_2024__362_G11_1331_0 ER -
%0 Journal Article %A Gómez Cobos, Santiago %A Restrepo, Joel E. %A Ruzhansky, Michael %T $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups %J Comptes Rendus. Mathématique %D 2024 %P 1331-1336 %V 362 %N G11 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.643/ %R 10.5802/crmath.643 %G en %F CRMATH_2024__362_G11_1331_0
Gómez Cobos, Santiago; Restrepo, Joel E.; Ruzhansky, Michael. $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1331-1336. doi: 10.5802/crmath.643
[1] - multipliers on locally compact groups, J. Funct. Anal., Volume 278 (2020) no. 3, 108324, 49 pages | DOI | MR | Zbl
[2] A short course on spectral theory, Graduate Texts in Mathematics, 209, Springer, 2002, x+135 pages | DOI | MR
[3] Fractional Evolution Equations in Banach Spaces, Ph. D. Thesis, Eindhoven University of Technology (2001) | MR
[4] Fractional differential equations: a novel study of local and global solutions in Banach spaces, Ph. D. Thesis, Universidade de São Paulo, São Carlos (2013)
[5] A note on spectral multipliers on Engel and Cartan groups, Proc. Am. Math. Soc., Volume 150 (2022) no. 5, pp. 2259-2270 | DOI | MR | Zbl
[6] Von Neumann algebras. Transl. from the French by F. Jellett, North-Holland Mathematical Library, 27, North-Holland, 1981, xxxviii+437 pages | MR | Zbl
[7] Generalized -numbers of -measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300 | DOI | MR | Zbl
[8] Mittag–Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, 2020, xvi+540 pages | DOI | MR | Zbl
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1049-1092 | DOI | MR | Zbl
[10] Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications, Proc. Japan Acad., Ser. A, Volume 57 (1981) no. 6, pp. 303-306 | DOI | MR | Zbl
[11] Decay estimates for time-fractional and other non-local in time subdiffusion equations in , Math. Ann., Volume 366 (2016) no. 3-4, pp. 941-979 | DOI | MR | Zbl
[12] On rings of operators, Ann. Math., Volume 37 (1936) no. 1, pp. 116-229 | DOI | MR | Zbl
[13] On rings of operators. II, Trans. Am. Math. Soc., Volume 41 (1937) no. 2, pp. 208-248 | DOI | MR | Zbl
[14] Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser, 1993, xxvi+366 pages | DOI | MR | Zbl
[15] Harmonic and anharmonic oscillators on the Heisenberg group, J. Math. Phys., Volume 63 (2022) no. 11, 111509, 23 pages | DOI | MR | Zbl
[16] An update on the - norms of spectral multipliers on unimodular Lie groups, Arch. Math., Volume 120 (2023) no. 5, pp. 507-520 | DOI | MR | Zbl
[17] Spaces Associated with Von Neumann Algebras (1981)
Cité par Sources :





