Article de recherche - Équations aux dérivées partielles
L p -L q estimates for non-local heat and wave type equations on locally compact groups
[Estimations L p -L q pour les équations non-locales de type chaleur et de type onde sur des groupes localement compacts]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1331-1336

We prove the L p -L q (1<p2q<+) norm estimates for the solutions of heat and wave type equations on a locally compact separable unimodular group G by using an integro-differential operator in time and any positive left invariant operator (maybe unbounded) on G. We complement our studies by giving asymptotic time estimates for the solutions, which in some cases are sharp.

On montre les estimations de norme L p -L q (1<p2q<+) pour les solutions des équations dites «  de type chaleur  » et «  de type onde  » définies sur un groupe localement compact, séparable et unimodulaire G en utilisant un opérateur intégro-différentiel sur le temps et un opérateur positif invariant á gauche quelconque sur G. De plus, on donne des estimations de temps asymptotiques pour ces solutions, qui deviennent des estimations optimales dans quelques cas.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.643
Classification : 43A15, 43A85, 45K05
Keywords: Locally compact groups, heat type equations, wave type equations, asymptotic estimates, non-local operators
Mots-clés : Groupes localement compacts, équations de type chaleur, équations de type onde, estimations asymptotiques, opérateurs non locaux

Gómez Cobos, Santiago  1   ; Restrepo, Joel E.  1 , 2   ; Ruzhansky, Michael  1 , 3

1 Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, B 9000 Ghent, Belgium
2 Department of Mathematics, Cinvestav IPN, Mexico city, Mexico
3 School of Mathematical Sciences, Queen Mary University of London, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1331_0,
     author = {G\'omez Cobos, Santiago and Restrepo, Joel E. and Ruzhansky, Michael},
     title = {$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1331--1336},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.643},
     zbl = {07945476},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.643/}
}
TY  - JOUR
AU  - Gómez Cobos, Santiago
AU  - Restrepo, Joel E.
AU  - Ruzhansky, Michael
TI  - $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1331
EP  - 1336
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.643/
DO  - 10.5802/crmath.643
LA  - en
ID  - CRMATH_2024__362_G11_1331_0
ER  - 
%0 Journal Article
%A Gómez Cobos, Santiago
%A Restrepo, Joel E.
%A Ruzhansky, Michael
%T $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups
%J Comptes Rendus. Mathématique
%D 2024
%P 1331-1336
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.643/
%R 10.5802/crmath.643
%G en
%F CRMATH_2024__362_G11_1331_0
Gómez Cobos, Santiago; Restrepo, Joel E.; Ruzhansky, Michael. $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1331-1336. doi: 10.5802/crmath.643

[1] Akylzhanov, Rauan; Ruzhansky, Michael L p -L q multipliers on locally compact groups, J. Funct. Anal., Volume 278 (2020) no. 3, 108324, 49 pages | DOI | MR | Zbl

[2] Arveson, William A short course on spectral theory, Graduate Texts in Mathematics, 209, Springer, 2002, x+135 pages | DOI | MR

[3] Bajlekova, E. G. Fractional Evolution Equations in Banach Spaces, Ph. D. Thesis, Eindhoven University of Technology (2001) | MR

[4] Carvalho-Neto, P. M. Fractional differential equations: a novel study of local and global solutions in Banach spaces, Ph. D. Thesis, Universidade de São Paulo, São Carlos (2013)

[5] Chatzakou, Marianna A note on spectral multipliers on Engel and Cartan groups, Proc. Am. Math. Soc., Volume 150 (2022) no. 5, pp. 2259-2270 | DOI | MR | Zbl

[6] Dixmier, Jacques Von Neumann algebras. Transl. from the French by F. Jellett, North-Holland Mathematical Library, 27, North-Holland, 1981, xxxviii+437 pages | MR | Zbl

[7] Fack, Thierry; Kosaki, Hideki Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300 | DOI | MR | Zbl

[8] Gorenflo, Rudolf; Kilbas, Anatoly A.; Mainardi, Francesco; Rogosin, Sergei Mittag–Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, 2020, xvi+540 pages | DOI | MR | Zbl

[9] Hassannezhad, Asma; Kokarev, Gerasim Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1049-1092 | DOI | MR | Zbl

[10] Kosaki, Hideki Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications, Proc. Japan Acad., Ser. A, Volume 57 (1981) no. 6, pp. 303-306 | DOI | MR | Zbl

[11] Kemppainen, Jukka; Siljander, Juhana; Vergara, Vicente; Zacher, Rico Decay estimates for time-fractional and other non-local in time subdiffusion equations in d , Math. Ann., Volume 366 (2016) no. 3-4, pp. 941-979 | DOI | MR | Zbl

[12] Murray, F. J.; Von Neumann, J. On rings of operators, Ann. Math., Volume 37 (1936) no. 1, pp. 116-229 | DOI | MR | Zbl

[13] Murray, F. J.; von Neumann, J. On rings of operators. II, Trans. Am. Math. Soc., Volume 41 (1937) no. 2, pp. 208-248 | DOI | MR | Zbl

[14] Prüss, Jan Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser, 1993, xxvi+366 pages | DOI | MR | Zbl

[15] Rottensteiner, David; Ruzhansky, Michael Harmonic and anharmonic oscillators on the Heisenberg group, J. Math. Phys., Volume 63 (2022) no. 11, 111509, 23 pages | DOI | MR | Zbl

[16] Rottensteiner, David; Ruzhansky, Michael An update on the L p -L q norms of spectral multipliers on unimodular Lie groups, Arch. Math., Volume 120 (2023) no. 5, pp. 507-520 | DOI | MR | Zbl

[17] Terp, M. L p Spaces Associated with Von Neumann Algebras (1981)

Cité par Sources :