Article de recherche - Analyse harmonique
On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
[Optimalité des inégalités quantitatives de Muckenhoupt–Wheeden]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1253-1260

In the recent work [Cruz-Uribe et al. (2021)] it was obtained that

|{x d :w(x)|G(fw -1 )(x)|>α}|[w] A 1 2 α d |f|dx

both in the matrix and scalar settings, where G is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on [w] A 1 is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.

Dans le récent travail [Cruz-Uribe et al. (2021)], il a été démontré

|{x d :w(x)|G(fw -1 )(x)|>α}|[w] A 1 2 α d |f|dx

à la fois dans les contextes matriciel et scalaire, où G est soit la fonction maximale de Hardy-Littlewood ou tout opérateur de Calderón-Zygmund. Dans cette note, nous démontrons que la dépendance quadratique par rapport à [w] A 1 est optimale. Cela est réalisé en construisant une séquence de poids à valeurs scalaires avec des caractéristiques d’éclatements, de sorte que les bornes correspondantes à la transformation de Hilbert et la fonction maximale soient exactement quadratiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.638
Classification : 42B20, 42B25
Keywords: Matrix weights, quantitative bounds, endpoint estimates
Mots-clés : Poids matriciel, borne quantitative, estimations de type faible $(1,1)$

Lerner, Andrei K.  1   ; Li, Kangwei  2   ; Ombrosi, Sheldy  3 , 4   ; Rivera-Ríos, Israel P.  5

1 Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel
2 Center for Applied Mathematics, Tianjin University, Weijin Road 92, 300072 Tianjin, China
3 Departamento de Análisis Matemático y Matemática Aplicada Universidad Complutense, Spain
4 Departamento de Matemática e Instituto de Matemática. Universidad Nacional del Sur - CONICET Argentina
5 Departamento de Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada. Facultad de Ciencias. Universidad de Málaga (Málaga, Spain).
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1253_0,
     author = {Lerner, Andrei K. and Li, Kangwei and Ombrosi, Sheldy and Rivera-R{\'\i}os, Israel P.},
     title = {On the sharpness of some quantitative {Muckenhoupt{\textendash}Wheeden} inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1253--1260},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G10},
     doi = {10.5802/crmath.638},
     zbl = {07939456},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.638/}
}
TY  - JOUR
AU  - Lerner, Andrei K.
AU  - Li, Kangwei
AU  - Ombrosi, Sheldy
AU  - Rivera-Ríos, Israel P.
TI  - On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1253
EP  - 1260
VL  - 362
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.638/
DO  - 10.5802/crmath.638
LA  - en
ID  - CRMATH_2024__362_G10_1253_0
ER  - 
%0 Journal Article
%A Lerner, Andrei K.
%A Li, Kangwei
%A Ombrosi, Sheldy
%A Rivera-Ríos, Israel P.
%T On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities
%J Comptes Rendus. Mathématique
%D 2024
%P 1253-1260
%V 362
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.638/
%R 10.5802/crmath.638
%G en
%F CRMATH_2024__362_G10_1253_0
Lerner, Andrei K.; Li, Kangwei; Ombrosi, Sheldy; Rivera-Ríos, Israel P. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1253-1260. doi: 10.5802/crmath.638

[1] Caldarelli, Marcela; Rivera-Ríos, Israel P. A sparse approach to mixed weak type inequalities, Math. Z., Volume 296 (2020) no. 1-2, pp. 787-812 | DOI | MR | Zbl

[2] Cruz-Uribe, David; Isralowitz, Joshua; Moen, Kabe; Pott, Sandra; Rivera-Ríos, Israel P. Weak endpoint bounds for matrix weights, Rev. Mat. Iberoam., Volume 37 (2021) no. 4, pp. 1513-1538 | DOI | MR | Zbl

[3] Cruz-Uribe, David; Martell, José M.; Pérez, Carlos Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not., Volume 2005 (2005) no. 30, pp. 1849-1871 | DOI | MR | Zbl

[4] Domelevo, Komla; Petermichl, Stefanie; Treil, Sergei; Volberg, Alexander The matrix A 2 conjecture fails, i.e. 3/2>1 (2024)

[5] Hytönen, Tuomas P.; Petermichl, Stefanie; Volberg, Alexander The sharp square function estimate with matrix weight, Discrete Anal., Volume 2019 (2019), 2, 8 pages | DOI | MR | Zbl

[6] Hytönen, Tuomas P. The sharp weighted bound for general Calderón–Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | MR | Zbl

[7] Isralowitz, Joshua; Moen, Kabe Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems, Indiana Univ. Math. J., Volume 68 (2019) no. 5, pp. 1327-1377 | DOI | MR | Zbl

[8] Isralowitz, Joshua; Pott, Sandra; Rivera-Ríos, Israel P. Sharp A 1 weighted estimates for vector-valued operators, J. Geom. Anal., Volume 31 (2021) no. 3, pp. 3085-3116 | DOI | MR | Zbl

[9] Li, Kangwei; Ombrosi, Sheldy; Pérez, Carlos Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates, Math. Ann., Volume 374 (2019) no. 1-2, pp. 907-929 | DOI | MR | Zbl

[10] Muckenhoupt, Benjamin; Wheeden, Richard L. Some weighted weak-type inequalities for the Hardy–Littlewood maximal function and the Hilbert transform, Indiana Univ. Math. J., Volume 26 (1977) no. 5, pp. 801-816 | DOI | MR | Zbl

[11] Nazarov, Fedor; Petermichl, Stefanie; Treil, Sergei; Volberg, Alexander Convex body domination and weighted estimates with matrix weights, Adv. Math., Volume 318 (2017), pp. 279-306 | DOI | MR | Zbl

[12] Ombrosi, Sheldy; Pérez, Carlos; Recchi, Jorgelina Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J., Volume 65 (2016) no. 2, pp. 615-640 | DOI | MR | Zbl

[13] Sawyer, Eric A weighted weak type inequality for the maximal function, Proc. Am. Math. Soc., Volume 93 (1985) no. 4, pp. 610-614 | DOI | MR | Zbl

Cité par Sources :