Article de recherche - Probabilités
A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
[Théorème limite du filtrage non linéaire pour les systèmes stochastiques McKean–Vlasov à plusieurs échelles]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1287-1299

The work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the L 2 sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filtering of them in the L 2 sense.

Ce travail concerne les systèmes stochastiques McKean–Vlasov multi-échelles. Tout d’abord, nous prouvons un principe de moyenne pour ces systèmes au sens L2. De plus, un taux de convergence est présenté. Ensuite, nous définissons le filtrage non linéaire de ces systèmes et établissons un théorème limite sur le filtrage non linéaire de ces systèmes au sens L 2 .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.637
Classification : 60G35
Keywords: Multiscale McKean–Vlasov stochastic systems, average principle, nonlinear filtering, limit theorem

Qiao, Huijie  1   ; Zhu, Shengqing  1

1 School of Mathematics, Southeast University, Nanjing, Jiangsu 211189, P.R.China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1287_0,
     author = {Qiao, Huijie and Zhu, Shengqing},
     title = {A limit theorem of nonlinear filtering for multiscale {McKean{\textendash}Vlasov} stochastic systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1287--1299},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G11},
     doi = {10.5802/crmath.637},
     zbl = {07945473},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.637/}
}
TY  - JOUR
AU  - Qiao, Huijie
AU  - Zhu, Shengqing
TI  - A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1287
EP  - 1299
VL  - 362
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.637/
DO  - 10.5802/crmath.637
LA  - en
ID  - CRMATH_2024__362_G11_1287_0
ER  - 
%0 Journal Article
%A Qiao, Huijie
%A Zhu, Shengqing
%T A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
%J Comptes Rendus. Mathématique
%D 2024
%P 1287-1299
%V 362
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.637/
%R 10.5802/crmath.637
%G en
%F CRMATH_2024__362_G11_1287_0
Qiao, Huijie; Zhu, Shengqing. A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems. Comptes Rendus. Mathématique, Tome 362 (2024) no. G11, pp. 1287-1299. doi: 10.5802/crmath.637

[1] Bezemek, Zachary William; Spiliopoulos, Konstantinos Rate of homogenization for fully-coupled McKean–Vlasov SDEs, Stoch. Dyn., Volume 23 (2023) no. 2, 2350013, 65 pages | DOI | MR | Zbl

[2] Gao, Jingyue; Hong, Wei; Liu, Wei Small noise asymptotics of multi-scale McKean-Vlasov stochastic dynamical systems, J. Differ. Equations, Volume 364 (2023), pp. 521-575 | DOI | MR | Zbl

[3] Hasʼminskiĭ, R. Z. On the principle of averaging the Itô’s stochastic differential equations, Kybernetika, Volume 4 (1968), pp. 260-279 | MR | Zbl

[4] Liu, Di Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., Volume 8 (2010) no. 4, pp. 999-1020 | DOI | MR | Zbl

[5] Liu, Meiqi; Qiao, Huijie Uniqueness and superposition of the space-distribution-dependent Zakai equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 27 (2024) no. 1, 2350014, 24 pages | DOI | MR | Zbl

[6] Liu, Wei; Röckner, Michael; Sun, Xiaobin; Xie, Yingchao Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, J. Differ. Equations, Volume 268 (2020) no. 6, pp. 2910-2948 | DOI | MR | Zbl

[7] Papanicolaou, Andrew; Spiliopoulos, Konstantinos Filtering the maximum likelihood for multiscale problems, Multiscale Model. Simul., Volume 12 (2014) no. 3, pp. 1193-1229 | DOI | MR | Zbl

[8] Qiao, Huijie Average principles and large deviation principles of multiscale multivalued McKean–Vlasov stochastic systems (2023) (http://arxiv.org/abs/2307.14561)

[9] Qiao, Huijie Convergence of nonlinear filtering for multiscale systems with correlated Lévy noises, Stoch. Dyn., Volume 23 (2023) no. 2, 2350016, 30 pages | MR | DOI | Zbl

[10] Qiao, Huijie; Wei, Wanlin Strong approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2206.05037)

[11] Qiao, Huijie; Wei, Wanlin Weak approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2212.00240)

[12] Röckner, Michael; Sun, Xiaobin; Xie, Yingchao Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 57 (2021) no. 1, pp. 547-576 | DOI | MR | Zbl

[13] Sen, Nevroz; Caines, Peter E. Nonlinear filtering for McKean–Vlasov type SDEs with application to mean field games, Proceedings of the 21st International symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands (2014), pp. 1344-1351

[14] Wang, Feng-Yu Distribution dependent SDEs for Landau type equations, Stochastic Processes Appl., Volume 128 (2018) no. 2, pp. 595-621 | DOI | MR | Zbl

[15] Xu, Jie; Liu, Juanfang; Liu, Jicheng; Miao, Yu Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations, Appl. Math. Optim., Volume 84 (2021) no. suppl. 1, p. S837-S867 | DOI | MR | Zbl

[16] Şen, Nevroz; Caines, Peter E. Nonlinear filtering theory for McKean-Vlasov type stochastic differential equations, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 153-174 | MR | DOI | Zbl

Cité par Sources :