Article de recherche - Probabilités
Rough Paths above Weierstrass Functions
[Chemins rugueux au-dessus de fonctions de Weierstrass]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1555-1570

Rough paths theory allows for a pathwise theory of solutions to differential equations driven by highly irregular signals. The fundamental observation of rough paths theory is that if one can define “iterated integrals” above a signal, then one can construct solutions to differential equations driven by the signal.

The typical examples of the signals of interest are stochastic processes such as (fractional) Brownian motion. However, rough paths theory is not inherently random and therefore can treat irregular deterministic driving signals such as a (vector-valued) Weierstrass function. This note supplies a construction of a rough path above vector-valued Weierstrass functions.

La théorie des chemins rugueux fournit une théorie trajectorielle des solutions aux équations différentielles gouvernées par des signaux très irréguliers. L’observation fondamentale de la théorie des chemins rugueux est que si l’on peut définir des “intégrales itérées” au-dessus d’un signal donné, alors on peut construire des solutions aux équations différentielles gouvernées par ce signal. Les exemples typiques de signaux d’intérêt sont des processus stochastiques tels le mouvement brownien (fractionnaire). Ceci dit, la théorie des chemins rugueux n’est pas intrinsèquement probabiliste et peut donc traiter des signaux déterministes irréguliers tels les fonctions de Weierstrass (à valeurs vectorielles). Cette note fournit une construction d’un chemin rugueux au-dessus de fonctions de Weierstrass (à valeurs vectorielles).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.635
Classification : 60L20
Keywords: Rough paths, Weierstrass functions
Mots-clés : Chemins rugueux, fonctions de Weierstrass

Cellarosi, Francesco  1   ; Selk, Zachary  1

1 Department of Mathematics and Statistics, Queen’s University, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1555_0,
     author = {Cellarosi, Francesco and Selk, Zachary},
     title = {Rough {Paths} above {Weierstrass} {Functions}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1555--1570},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G12},
     doi = {10.5802/crmath.635},
     zbl = {07949972},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.635/}
}
TY  - JOUR
AU  - Cellarosi, Francesco
AU  - Selk, Zachary
TI  - Rough Paths above Weierstrass Functions
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1555
EP  - 1570
VL  - 362
IS  - G12
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.635/
DO  - 10.5802/crmath.635
LA  - en
ID  - CRMATH_2024__362_G12_1555_0
ER  - 
%0 Journal Article
%A Cellarosi, Francesco
%A Selk, Zachary
%T Rough Paths above Weierstrass Functions
%J Comptes Rendus. Mathématique
%D 2024
%P 1555-1570
%V 362
%N G12
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.635/
%R 10.5802/crmath.635
%G en
%F CRMATH_2024__362_G12_1555_0
Cellarosi, Francesco; Selk, Zachary. Rough Paths above Weierstrass Functions. Comptes Rendus. Mathématique, Tome 362 (2024) no. G12, pp. 1555-1570. doi: 10.5802/crmath.635

[1] Barański, K.; Bárány, B.; Romanowska, J. On the dimension of the graph of the classical Weierstrass function, Adv. Math., Volume 265 (2014), pp. 32-59 | DOI | MR | Zbl

[2] Biacino, L. On the Hausdorff dimension of the graph of a Weierstrass type function, Stud. Univ. Babeş-Bolyai Math., Volume 56 (2011) no. 4, pp. 7-17 | MR | Zbl

[3] Bugeaud, Y. Linear forms in logarithms and applications, IRMA Lectures in Mathematics and Theoretical Physics, 28, European Mathematical Society, 2018, xvi+224 pages | DOI | MR | Zbl

[4] Broux, Lucas; Zambotti, Lorenzo The sewing lemma for 0<γ1, J. Funct. Anal., Volume 283 (2022) no. 10, 109644, 34 pages | DOI | MR | Zbl

[5] Friz, P. K.; Gess, B.; Gulisashvili, A.; Riedel, S. The Jain-Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory, Ann. Probab., Volume 44 (2016) no. 1, pp. 684-738 | DOI | MR | Zbl

[6] Friz, P. K.; Hairer, M. A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2020, xvi+346 pages | DOI | MR | Zbl

[7] Fu, S. On the Hausdorff dimension of the graph of the Weierstrass function, Far East J. Dyn. Syst., Volume 17 (2011) no. 2, pp. 85-137 | MR | Zbl

[8] Friz, P. K.; Victoir, N. B. Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010, xiv+656 pages (Theory and applications) | DOI | MR | Zbl

[9] Hardy, G. H. Weierstrass’s non-differentiable function, Trans. Am. Math. Soc., Volume 17 (1916) no. 3, pp. 301-325 | DOI | MR

[10] Hunt, B. R. The Hausdorff dimension of graphs of Weierstrass functions, Proc. Am. Math. Soc., Volume 126 (1998) no. 3, pp. 791-800 | DOI | MR | Zbl

[11] Imkeller, P.; Menoukeu Pamen, O.; dos Reis, G.; Réveillac, A. Rough Weierstrass functions and dynamical systems: the smoothness of the SBR measure, Pure Appl. Funct. Anal., Volume 7 (2022) no. 4, pp. 1273-1305 | MR | Zbl

[12] Imkeller, P.; Prömel, D. J. Existence of Lévy’s area and pathwise integration, Commun. Stoch. Anal., Volume 9 (2015) no. 1, pp. 93-111 | DOI | MR

[13] Keller, G. A simpler proof for the dimension of the graph of the classical Weierstrass function, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 1, pp. 169-181 | DOI | MR | Zbl

[14] Lind, J.; Robins, J. Loewner deformations driven by the Weierstrass function, Involve, Volume 10 (2017) no. 1, pp. 151-164 | DOI | MR | Zbl

[15] Lyons, T.; Victoir, N. An extension theorem to rough paths, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 5, pp. 835-847 | DOI | MR | Zbl | Numdam

[16] Nualart, D.; Tindel, S. A construction of the rough path above fractional Brownian motion using Volterra’s representation, Ann. Probab., Volume 39 (2011) no. 3, pp. 1061-1096 | DOI | MR | Zbl

[17] Shen, W. Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., Volume 289 (2018) no. 1-2, pp. 223-266 | DOI | MR | Zbl

[18] Young, L. C. An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., Volume 67 (1936) no. 1, pp. 251-282 | MR | Zbl | DOI

Cité par Sources :