Article de recherche - Équations aux dérivées partielles
Stable domains for higher order elliptic operators
[Domaines stables pour des opérateurs elliptiques d’ordre quelconque]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1189-1203

This paper is devoted to prove that any domain satisfying a (δ 0 ,r 0 )-capacitary condition of first order is automatically (m,p)-stable for all m1 and p>1, and for any dimension N1. In particular, this includes regular enough domains such as 𝒞 1 -domains, Lipschitz domains, Reifenberg-flat domains, but is sufficiently weak to also include cusp points. Our result extends some of the results of Hayouni and Pierre valid only for N=2,3, and partially extends the results of Bucur and Zolésio for higher order operators, with a different and simpler proof.

Dans cet article nous démontrons que tout domaine satisfaisant une condition de (δ 0 ,r 0 )-capacité de premier ordre, est automatiquement (m,p) stable pour tout m1 et pour tout p>1. En particulier, ceci inclus tous les domaines suffisamment réguliers tels que les domaines C 1 , Lipschitz, Reifenberg-plat, mais la condition est suffisamment faible pour inclure des points de type cusp. Notre résultat généralise des résultats antérieurs de Hayouni et Pierre valables seulement en dimension N=2,3 et étend aussi des résultats antérieurs de Bucur et Zolésio pour des opérateurs d’ordre supérieurs, avec une preuve plus simple et différente.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.630
Classification : 49G05, 35J20, 49Q20
Keywords: Capacity, stable domains, $\gamma _m$-convergence, Mosco-convergence, shape optimisation
Mots-clés : Capacité, domaines stables, $\gamma _m$-convergence, Mosco-convergence, optimisation de forme

Grosjean, Jean-François  1   ; Lemenant, Antoine  1   ; Mougenot, Rémy   1

1 Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1189_0,
     author = {Grosjean, Jean-Fran\c{c}ois and Lemenant, Antoine and Mougenot, R\'emy },
     title = {Stable domains for higher order elliptic operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1189--1203},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G10},
     doi = {10.5802/crmath.630},
     zbl = {07939452},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.630/}
}
TY  - JOUR
AU  - Grosjean, Jean-François
AU  - Lemenant, Antoine
AU  - Mougenot, Rémy 
TI  - Stable domains for higher order elliptic operators
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1189
EP  - 1203
VL  - 362
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.630/
DO  - 10.5802/crmath.630
LA  - en
ID  - CRMATH_2024__362_G10_1189_0
ER  - 
%0 Journal Article
%A Grosjean, Jean-François
%A Lemenant, Antoine
%A Mougenot, Rémy 
%T Stable domains for higher order elliptic operators
%J Comptes Rendus. Mathématique
%D 2024
%P 1189-1203
%V 362
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.630/
%R 10.5802/crmath.630
%G en
%F CRMATH_2024__362_G10_1189_0
Grosjean, Jean-François; Lemenant, Antoine; Mougenot, Rémy . Stable domains for higher order elliptic operators. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1189-1203. doi: 10.5802/crmath.630

[1] Adams, David R.; Hedberg, Lars Inge Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1995 | MR | Zbl

[2] Ambrosio, Luigi; Tilli, Paolo Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, 2004 | MR | Zbl

[3] Bucur, Dorin; Buttazzo, Giuseppe Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser, 2005 | MR | Zbl | DOI

[4] Bulanyi, Bohdan On the importance of the connectedness assumption in the statement of the optimal p-compliance problem, J. Math. Anal. Appl., Volume 499 (2021) no. 2, p. 11 (Id/No 125064) | MR | DOI | Zbl

[5] Bucur, Dorin; Zolésio, Jean Paul Flat cone condition and shape analysis, Control of partial differential equations. IFIP WG 7.2 Conference, Villa Madruzzo, Trento, Italy, January 4-9, 1993, Marcel Dekker, 1994, pp. 37-49 | MR | Zbl

[6] Bucur, Dorin; Zolésio, Jean Paul N-dimensional shape optimization under capacitary constraint, J. Differ. Equations, Volume 123 (1995) no. 2, pp. 504-522 | MR | DOI | Zbl

[7] Hedberg, Lars Inge Two approximation problems in function spaces, Ark. Mat., Volume 16 (1978), pp. 51-81 | MR | DOI | Zbl

[8] Hedberg, Lars Inge Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem, Acta Math., Volume 147 (1981), pp. 237-264 | MR | DOI | Zbl

[9] Hayouni, Mohammed; Pierre, Michel Domain continuity for an elliptic operator of fourth order, Commun. Contemp. Math., Volume 4 (2002) no. 1, pp. 1-14 | MR | DOI | Zbl

[10] Henrot, Antoine; Pierre, Michel Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), 48, Springer, 2005 | MR | DOI | Zbl

[11] Mera, M. E.; Morán, M.; Preiss, D.; Zajíček, L. Porosity, σ-porosity and measures, Nonlinearity, Volume 16 (2003) no. 1, pp. 247-255 | MR | DOI | Zbl

[12] Zajíček, L. Porosity and σ-porosity, Real Anal. Exch., Volume 13 (1988) no. 2, pp. 314-350 | MR | Zbl | DOI

[13] Ziemer, William P. Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer, 1989 | MR | DOI | Zbl

Cité par Sources :