Article de recherche - Théorie des représentations
Multiplicities of Representations in Algebraic Families
[Multiplicités des représentations dans les familles algébriques]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1097-1107

In this short notes, we consider multiplicities of representations in general algebraic families, especially the upper semi-continuity of homological multiplicities and the locally constancy of Euler–Poincaré numbers. This generalizes the main result of Aizenbud–Sayag for unramified twisting families.

Dans cette courte note, nous considérons les multiplicités de représentations dans des familles algébriques générales,en particulier la semi-continuité supérieure des multiplicités homologiques et la constance locale des nombres d’Euler–Poincaré. Ceci généralise le résultat principal d’Aizenbud–Sayag pour les familles obtenues en induisant une représentation fixée que l’on tord par des caractères non ramifiés.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.623
Classification : 22E45, 20G25
Keywords: Branching laws, Homological multiplicities, Spherical varieties
Mots-clés : Lois de branchement, multiplicités homologiques, variétés sphériques

Cai, Li  1   ; Fan, Yangyu  2

1 Academy for Multidisciplinary Studies, Beijing National Center for Applied Mathematics, Capital Normal University, Beijing, 100048, People’s Republic of China
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1097_0,
     author = {Cai, Li and Fan, Yangyu},
     title = {Multiplicities of {Representations} in {Algebraic} {Families}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1097--1107},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G10},
     doi = {10.5802/crmath.623},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.623/}
}
TY  - JOUR
AU  - Cai, Li
AU  - Fan, Yangyu
TI  - Multiplicities of Representations in Algebraic Families
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1097
EP  - 1107
VL  - 362
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.623/
DO  - 10.5802/crmath.623
LA  - en
ID  - CRMATH_2024__362_G10_1097_0
ER  - 
%0 Journal Article
%A Cai, Li
%A Fan, Yangyu
%T Multiplicities of Representations in Algebraic Families
%J Comptes Rendus. Mathématique
%D 2024
%P 1097-1107
%V 362
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.623/
%R 10.5802/crmath.623
%G en
%F CRMATH_2024__362_G10_1097_0
Cai, Li; Fan, Yangyu. Multiplicities of Representations in Algebraic Families. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1097-1107. doi: 10.5802/crmath.623

[1] Aizenbud, Avraham; Avni, Nir; Gourevitch, Dmitry Spherical pairs over close local fields, Comment. Math. Helv., Volume 87 (2012) no. 4, pp. 929-962 | DOI | MR | Zbl

[2] Aizenbud, Avraham; Sayag, Eitan Homological multiplicities in representation theory of p-adic groups, Math. Z., Volume 294 (2020) no. 1-2, pp. 451-469 | DOI | MR | Zbl

[3] Blanc, Philippe; Delorme, Patrick Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique G/H, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 213-261 | DOI | MR | Zbl | Numdam

[4] Cai, Li; Fan, Yangyu Top degree Ext-groups and relatively supercuspidal spectra, Adv. Math., Volume 410 (2022) no. part A, p. Paper No. 108744, 25 | DOI | MR | Zbl

[5] Cai, Li; Fan, Yangyu Families of canonical local periods on spherical varieties, Math. Ann., Volume 389 (2024) no. 1, pp. 209-252 | DOI | MR | Zbl

[6] Chen, R. Ext-Bessel model vanishes for tempered representations (2023) (https://arxiv.org/abs/2303.12619)

[7] Chan, Kei Yuen; Savin, Gordan A vanishing Ext-branching theorem for (GL n+1 (F),GL n (F)), Duke Math. J., Volume 170 (2021) no. 10, pp. 2237-2261 | DOI | MR | Zbl

[8] Disegni, Daniel Local Langlands correspondence, local factors, and zeta integrals in analytic families, J. Lond. Math. Soc. (2), Volume 101 (2020) no. 2, pp. 735-764 | DOI | MR | Zbl

[9] Disegni, Daniel The universal p-adic Gross-Zagier formula, Invent. Math., Volume 230 (2022) no. 2, pp. 509-649 | DOI | MR | Zbl

[10] Emerton, Matthew; Helm, David The local Langlands correspondence for GL n in families, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014) no. 4, pp. 655-722 | DOI | MR | Zbl

[11] Flicker, Yuval Z. Bernstein’s isomorphism and good forms, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) (Proc. Sympos. Pure Math.), Volume 58, American Mathematical Society, Providence, RI, 1995, pp. 171-196 | DOI | MR | Zbl

[12] Feigon, Brooke; Lapid, Erez; Offen, Omer On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Études Sci., Volume 115 (2012), pp. 185-323 | DOI | MR | Zbl | Numdam

[13] Gelfand, Sergei I.; Manin, Yuri I. Methods of homological algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, xx+372 pages | DOI | MR | Zbl

[14] Opdam, Eric; Solleveld, Maarten Resolutions of tempered representations of reductive p-adic groups, J. Funct. Anal., Volume 265 (2013) no. 1, pp. 108-134 | DOI | MR | Zbl

[15] Prasad, Dipendra Ext-analogues of branching laws, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ (2018), pp. 1367-1392 | DOI | MR | Zbl

[16] Prasad, Dipendra Generalizing the MVW involution, and the contragredient, Trans. Amer. Math. Soc., Volume 372 (2019) no. 1, pp. 615-633 | DOI | MR | Zbl

[17] Stack projects, 2022 (https://stacks.math.columbia.edu)

[18] Schneider, Peter; Stuhler, Ulrich Representation theory and sheaves on the Bruhat–Tits building, Inst. Hautes Études Sci. Publ. Math. (1997) no. 85, pp. 97-191 | DOI | MR | Zbl | Numdam

[19] Sakellaridis, Yiannis; Venkatesh, Akshay Periods and harmonic analysis on spherical varieties, Astérisque, 396, Société Mathématique de France, Paris, 2017, viii+360 pages | MR | Zbl

[20] Wan, Chen On a multiplicity formula for spherical varieties, J. Eur. Math. Soc. (JEMS), Volume 24 (2022) no. 10, pp. 3629-3678 | DOI | MR | Zbl

[21] Yekutieli, Amnon A course on derived categories (2015) (https://arxiv.org/abs/1206.6632)

Cité par Sources :