[Distribution des matrices sur ]
In this paper, we count the number of matrices where , , and is a given orbit of . By an elementary argument, we show that the above number is exactly . This formula gives an equidistribution result over , which is an analogue, in strong form, of a result over proved in [2] and [3].
Dans cet article, nous comptons le nombre de matrices où , et est une orbite donnée de . Par un argument élémentaire, nous montrons que le nombre ci-dessus est exactement . Cette formule donne un résultat d’équidistribution sur , qui est un analogue, sous forme forte, d’un résultat sur prouvé dans [2] et [3].
Révisé le :
Accepté le :
Publié le :
Keywords: Counting formula, Finite field, Polynomial ring
Mots-clés : Formule de comptage, Corps fini, Anneau polynomial
Ji, Yibo  1
CC-BY 4.0
@article{CRMATH_2024__362_G8_883_0,
author = {Ji, Yibo},
title = {Distribution of matrices over $\mathbb{F}_q[x]$},
journal = {Comptes Rendus. Math\'ematique},
pages = {883--893},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G8},
doi = {10.5802/crmath.616},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.616/}
}
TY - JOUR
AU - Ji, Yibo
TI - Distribution of matrices over $\mathbb{F}_q[x]$
JO - Comptes Rendus. Mathématique
PY - 2024
SP - 883
EP - 893
VL - 362
IS - G8
PB - Académie des sciences, Paris
UR - https://www.numdam.org/articles/10.5802/crmath.616/
DO - 10.5802/crmath.616
LA - en
ID - CRMATH_2024__362_G8_883_0
ER -
Ji, Yibo. Distribution of matrices over $\mathbb{F}_q[x]$. Comptes Rendus. Mathématique, Tome 362 (2024) no. G8, pp. 883-893. doi: 10.5802/crmath.616
[1] Partial resolutions of nilpotent varieties, Astérisque, 101–102, Société Mathématique de France, 1983, pp. 23-74 | MR | Zbl | Numdam
[2] Density of integer points on affine homogeneous varieties, Duke Math. J., Volume 71 (1993) no. 1, pp. 143-179 | DOI | MR | Zbl
[3] Mixing, counting, and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | DOI | MR | Zbl
[4] Unipotent flows and counting lattice points on homogeneous varieties, Ann. Math., Volume 143 (1996) no. 2, pp. 253-299 | DOI | MR | Zbl
[5] Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 48-80 | Zbl | DOI | MR
[6] Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz., Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 | DOI | MR | Zbl
[7] Rational points in flag varieties over function fields, J. Number Theory, Volume 95 (2002) no. 2, pp. 142-149 | DOI | MR | Zbl
[8] Number of points of the nilpotent cone over a finite field and its cohomology (https://mathoverflow.net/questions/301206/number-of-points-of-the-nilpotent-cone-over-a-finite-field-and-its-cohomology)
[9] Counting subspaces of given height defined over a function field, J. Number Theory, Volume 128 (2008) no. 12, pp. 2973-3004 | MR | Zbl | DOI
Cité par Sources :





