Article de recherche - Théorie des nombres
Sign changes of the partial sums of a random multiplicative function II
[Changements de signe des sommes partielles d’une fonction multiplicative aléatoire II]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G8, pp. 895-901

We study two models of random multiplicative functions: Rademacher random multiplicative functions supported on the squarefree integers f, and Rademacher random completely multiplicative functions f * . We prove that the partial sums nx f * (n) and nx f(n) n change sign infinitely often as x, almost surely. The case nx f * (n) n is left as an open question and we stress the possibility of only a finite number of sign changes, with positive probability.

Nous étudions deux modèles de fonctions multiplicatives aléatoires : les fonctions multiplicatives aléatoires de Rademacher supportées sur les entiers sans carrés f, et les fonctions multiplicatives aléatoires complètement multiplicatives de Rademacher f * . Nous prouvons que les sommes partielles nx f * (n) et nx f(n) n changent de signe infiniment souvent comme x, presque sûrement. Le cas nx f * (n) n reste une question ouverte et nous soulignons la possibilité de seulement un nombre fini de changements de signe, avec probabilité positive.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.615
Classification : 11K65, 11N99
Keywords: Random multiplicative functions, Oscillation theorems
Mots-clés : Fonctions multiplicatives aléatoires, théorèmes d’oscillation

Aymone, Marco  1

1 Departamento de Matemática, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G8_895_0,
     author = {Aymone, Marco},
     title = {Sign changes of the partial sums of a random multiplicative function {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {895--901},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G8},
     doi = {10.5802/crmath.615},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.615/}
}
TY  - JOUR
AU  - Aymone, Marco
TI  - Sign changes of the partial sums of a random multiplicative function II
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 895
EP  - 901
VL  - 362
IS  - G8
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.615/
DO  - 10.5802/crmath.615
LA  - en
ID  - CRMATH_2024__362_G8_895_0
ER  - 
%0 Journal Article
%A Aymone, Marco
%T Sign changes of the partial sums of a random multiplicative function II
%J Comptes Rendus. Mathématique
%D 2024
%P 895-901
%V 362
%N G8
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.615/
%R 10.5802/crmath.615
%G en
%F CRMATH_2024__362_G8_895_0
Aymone, Marco. Sign changes of the partial sums of a random multiplicative function II. Comptes Rendus. Mathématique, Tome 362 (2024) no. G8, pp. 895-901. doi: 10.5802/crmath.615

[1] Aymone, Marco; Heap, Winston; Zhao, Jing Partial sums of random multiplicative functions and extreme values of a model for the Riemann zeta function, J. Lond. Math. Soc., Volume 103 (2021) no. 4, pp. 1618-1642 | DOI | MR | Zbl

[2] Aymone, Marco; Heap, Winston; Zhao, Jing Sign changes of the partial sums of a random multiplicative function, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 78-89 | DOI | MR | Zbl

[3] Aymone, M.; Sidoravicius, V. Partial sums of biased random multiplicative functions, J. Number Theory, Volume 172 (2017), pp. 343-382 | DOI | MR | Zbl

[4] Angelo, Rodrigo; Xu, Max Wenqiang On a Turán conjecture and random multiplicative functions, Q. J. Math., Volume 74 (2023) no. 2, pp. 767-777 Online first (2022) | DOI | MR | Zbl

[5] Basquin, Joseph Sommes friables de fonctions multiplicatives aléatoires, Acta Arith., Volume 152 (2012) no. 3, pp. 243-266 | DOI | MR | Zbl

[6] Benatar, Jacques; Nishry, Alon; Rodgers, Brad Moments of polynomials with random multiplicative coefficients, Mathematika, Volume 68 (2022) no. 1, pp. 191-216 | Zbl | DOI | MR

[7] Bondarenko, Andriy; Seip, Kristian Helson’s problem for sums of a random multiplicative function, Mathematika, Volume 62 (2016) no. 1, pp. 101-110 | DOI | MR | Zbl

[8] Caich, Rachid Almost sure upper bound for random multiplicative functions (2023) (https://arxiv.org/abs/2304.00943)

[9] Chatterjee, Sourav; Soundararajan, Kannan Random multiplicative functions in short intervals, Int. Math. Res. Not., Volume 2012 (2012) no. 3, pp. 479-492 | DOI | MR | Zbl

[10] Erdős, Paul Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 6 (1961), pp. 221-254 | MR | Zbl

[11] Halász, G. On random multiplicative functions, Hubert Delange colloquium (Orsay, 1982) (Publications Mathématiques d’Orsay), Volume 83, Univ. Paris XI, Orsay, 1983, pp. 74-96 | MR | Zbl

[12] Harper, Adam J. Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, Ann. Appl. Probab., Volume 23 (2013) no. 2, pp. 584-616 | DOI | MR | Zbl

[13] Harper, Adam J. On the limit distributions of some sums of a random multiplicative function, J. Reine Angew. Math., Volume 678 (2013), pp. 95-124 | DOI | MR | Zbl

[14] Harper, Adam J. Moments of random multiplicative functions, II: High moments, Algebra Number Theory, Volume 13 (2019) no. 10, pp. 2277-2321 | DOI | MR | Zbl

[15] Harper, Adam J. Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation, and critical multiplicative chaos, Forum Math. Pi, Volume 8 (2020), e1, 95 pages | DOI | MR | Zbl

[16] Harper, Adam J. Almost sure large fluctuations of random multiplicative functions, Int. Math. Res. Not., Volume 2023 (2023) no. 3, pp. 2095-2138 | DOI | MR | Zbl

[17] Hardy, Seth Almost sure bounds for a weighted Steinhaus random multiplicative function (2023) (https://arxiv.org/abs/2307.00499)

[18] Haselgrove, C. B. A disproof of a conjecture of Pólya, Mathematika, Volume 5 (1958), pp. 141-145 | DOI | MR | Zbl

[19] Heap, Winston; Lindqvist, Sofia Moments of random multiplicative functions and truncated characteristic polynomials, Q. J. Math., Volume 67 (2016) no. 4, pp. 683-714 | DOI | MR | Zbl

[20] Harper, Adam J.; Nikeghbali, Ashkan; Radziwił ł, Maksym A note on Helson’s conjecture on moments of random multiplicative functions, Analytic number theory, Springer, 2015, pp. 145-169 | DOI | MR | Zbl

[21] Hough, Bob Summation of a random multiplicative function on numbers having few prime factors, Math. Proc. Camb. Philos. Soc., Volume 150 (2011) no. 2, pp. 193-214 | DOI | MR | Zbl

[22] Humphries, Peter The distribution of weighted sums of the Liouville function and Pólya’s conjecture, J. Number Theory, Volume 133 (2013) no. 2, pp. 545-582 | DOI | MR | Zbl

[23] Kalmynin, A. B. Quadratic characters with positive partial sums, Mathematika, Volume 69 (2023) no. 1, pp. 90-99 | DOI | MR | Zbl

[24] Kerr, B.; Klurman, O. How negative can nx f(n) n be? (2022) (https://arxiv.org/abs/2211.05540)

[25] Klurman, Oleksiy; Shkredov, I. D.; Xu, Max Wenqiang On the random Chowla conjecture, Geom. Funct. Anal., Volume 33 (2023) no. 3, pp. 749-777 | DOI | MR | Zbl

[26] Levy, Paul Sur les séries dont les termes sont des variables eventuelles independantes, Stud. Math., Volume 3 (1931), pp. 119-155 | DOI | Zbl

[27] Lau, Yuk-Kam; Tenenbaum, Gérald; Wu, Jie On mean values of random multiplicative functions, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 409-420 | DOI | MR | Zbl

[28] Mossinghoff, Michael J.; Trudgian, Timothy S. Between the problems of Pólya and Turán, J. Aust. Math. Soc., Volume 93 (2012) no. 1-2, pp. 157-171 | DOI | MR | Zbl

[29] Najnudel, Joseph On consecutive values of random completely multiplicative functions, Electron. J. Probab., Volume 25 (2020), 59, 28 pages | DOI | MR | Zbl

[30] Soundararajan, Kannan; Xu, Max Wenqiang Central limit theorems for random multiplicative functions (2022) (https://arxiv.org/abs/2212.06098)

[31] Wintner, Aurel Random factorizations and Riemann’s hypothesis, Duke Math. J., Volume 11 (1944), pp. 267-275 | MR | Zbl | DOI

[32] Xu, Max Wenqiang Better than square-root cancellation for random multiplicative functions, Trans. Amer. Math. Soc., Ser. B, Volume 11 (2024), pp. 482-507 | DOI | MR | Zbl

Cité par Sources :