Article de recherche - Géométrie algébrique
Families of jets of arc type and higher (co)dimensional Du Val singularities
[Familles de jets de type arc et singularités de Du Val de (co)dimension supérieure]
Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Tome 362 (2024), pp. 119-139

Families of jets through singularities of algebraic varieties are here studied in relation to the families of arcs originally studied by Nash. After proving a general result relating them, we look at normal locally complete intersection varieties with rational singularities and focus on a class of singularities we call higher Du Val singularities, a higher dimensional (and codimensional) version of Du Val singularities that is closely related to Arnold singularities. More generally, we introduce the notion of higher compound Du Val singularities, whose definition parallels that of compound Du Val singularities. For such singularities, we prove that there exists a one-to-one correspondence between families of arcs and families of jets of sufficiently high order through the singularities. In dimension two, the result partially recovers a theorem of Mourtada on the jet schemes of Du Val singularities. As an application, we give a solution of the Nash problem for higher Du Val singularities.

Les familles de jets à travers les singularités des variétés algébriques sont étudiées ici en relation avec les familles d’arcs initialement étudiées par Nash. Après avoir démontré un résultat général les concernant, nous examinons les variétés d’intersection localement complètes normales avec des singularités rationnelles et nous concentrons sur une classe de singularités que nous appelons « singularités de Du Val supérieures » , une version de dimension (et codimension) supérieure des singularités de Du Val étroitement liée aux singularités d’Arnold. Plus généralement, nous introduisons la notion de « singularités de Du Val composées supérieures » , dont la définition est parallèle à celle des singularités de Du Val composées. Pour de telles singularités, nous démontrons qu’il existe une correspondance bijective entre les familles d’arcs et les familles de jets d’ordre suffisamment élevé à travers les singularités. En dimension deux, le résultat récupère partiellement un théorème de Mourtada sur les schémas de jets des singularités de Du Val. En tant qu’application, nous proposons une solution au problème de Nash pour les singularités de Du Val supérieures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.614
Classification : 14E18, 14B05
Keywords: Jet scheme, arc space, Nash problem, rational singularity
Mots-clés : Schémas de jet, espace d’arc, problème de Nash, singularité rationnelle

de Fernex, Tommaso  1   ; Wang, Shih-Hsin  1

1 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_S1_119_0,
     author = {de Fernex, Tommaso and Wang, Shih-Hsin},
     title = {Families of jets of arc type and higher (co)dimensional {Du} {Val} singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--139},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {S1},
     doi = {10.5802/crmath.614},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.614/}
}
TY  - JOUR
AU  - de Fernex, Tommaso
AU  - Wang, Shih-Hsin
TI  - Families of jets of arc type and higher (co)dimensional Du Val singularities
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 119
EP  - 139
VL  - 362
IS  - S1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.614/
DO  - 10.5802/crmath.614
LA  - en
ID  - CRMATH_2024__362_S1_119_0
ER  - 
%0 Journal Article
%A de Fernex, Tommaso
%A Wang, Shih-Hsin
%T Families of jets of arc type and higher (co)dimensional Du Val singularities
%J Comptes Rendus. Mathématique
%D 2024
%P 119-139
%V 362
%N S1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.614/
%R 10.5802/crmath.614
%G en
%F CRMATH_2024__362_S1_119_0
de Fernex, Tommaso; Wang, Shih-Hsin. Families of jets of arc type and higher (co)dimensional Du Val singularities. Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Tome 362 (2024), pp. 119-139. doi: 10.5802/crmath.614

[1] Arnold, Vladimir I. Normal forms of functions near degenerate critical points, the Weyl groups A k ,D k ,E k and Lagrangian singularities, Funkts. Anal. Prilozh., Volume 6 (1972) no. 4, pp. 3-25 | MR | Zbl

[2] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[3] Budur, Nero; de la Bodega, Javier; de Lorenzo Poza, Eduardo; Fernández de Bobadilla, Javier; Pełka, Tomasz On the embedded Nash problem (2022) | arXiv

[4] Burns, Daniel On rational singularities in dimensions >2, Math. Ann., Volume 211 (1974), pp. 237-244 | DOI | MR | Zbl

[5] Cobo, Helena; Mourtada, Hussein Jet schemes of quasi-ordinary surface singularities, Nagoya Math. J., Volume 242 (2021), pp. 77-164 | DOI | MR | Zbl

[6] Chiu, Christopher; de Fernex, Tommaso; Docampo, Roi Embedding codimension of the space of arcs, Forum Math. Pi, Volume 10 (2022), e4, 37 pages | DOI | MR | Zbl

[7] Ein, Lawrence; Lazarsfeld, Robert; Mustaţǎ, Mircea Contact loci in arc spaces, Compos. Math., Volume 140 (2004) no. 5, pp. 1229-1244 | DOI | MR | Zbl

[8] Ein, Lawrence; Mustaţǎ, Mircea Inversion of adjunction for local complete intersection varieties, Am. J. Math., Volume 126 (2004) no. 6, pp. 1355-1365 | MR | Zbl

[9] Ein, Lawrence; Mustaţǎ, Mircea Jet schemes and singularities, Algebraic Geometry (Seattle, 2005). Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 505-546 | DOI | MR | Zbl

[10] Fernández de Bobadilla, Javier; Pe Pereira, María The Nash problem for surfaces, Ann. Math., Volume 176 (2012) no. 3, pp. 2003-2029 | DOI | MR | Zbl

[11] Fernández de Bobadilla, Javier; Pe Pereira, María; Popescu-Pampu, Patrick On the generalized Nash problem for smooth germs and adjacencies of curve singularities, Adv. Math., Volume 320 (2017), pp. 1269-1317 | DOI | MR | Zbl

[12] Greenberg, Marvin J. Rational points in Henselian discrete valuation rings, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 31, pp. 59-64 | MR | DOI | Numdam

[13] Grothendieck, Alexander Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I., Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, pp. 1-167 | MR

[14] Howald, J. A. Multiplier ideals of monomial ideals, Trans. Am. Math. Soc., Volume 353 (2001) no. 7, pp. 2665-2671 | DOI | MR | Zbl

[15] Ishii, Shihoko; Kollár, János The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620 | DOI | MR | Zbl

[16] Ishii, Shihoko Maximal divisorial sets in arc spaces, Algebraic Geometry in East Asia (Hanoi, 2005) (Advanced Studies in Pure Mathematics), Volume 50, Mathematical Society of Japan, 2008, pp. 237-249 | DOI | MR | Zbl

[17] Johnson, Jennifer M.; Kollár, János Arc spaces of cA-type singularities, J. Singul., Volume 7 (2013), pp. 238-252 | DOI | MR | Zbl

[18] Kolchin, Ellis R. Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR

[19] Kollár, János Singularities of pairs, Algebraic Geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl

[20] Koreeda, Yoshimune On the configuration of the singular fibers of jet schemes of rational double points, Commun. Algebra, Volume 50 (2022) no. 4, pp. 1802-1820 | DOI | MR | Zbl

[21] Lech, Christer Inequalities related to certain couples of local rings, Acta Math., Volume 112 (1964), pp. 69-89 | Zbl | DOI | MR

[22] Lejeune-Jalabert, Monique; Mourtada, Hussein; Reguera, Ana Jet schemes and minimal embedded desingularization of plane branches, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 107 (2013) no. 1, pp. 145-157 | DOI | MR | Zbl

[23] Looijenga, Eduard Motivic measures, Séminaire Bourbaki, Vol. 1999/2000 (Astérisque), Volume 276, Société Mathématique de France, 2002, pp. 267-297 | MR | Zbl | Numdam

[24] Markushevich, Dimitri Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci., Tokyo, Volume 3 (1996) no. 2, pp. 445-456 | MR | Zbl

[25] Matsumura, Hideyuki Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR

[26] Mourtada, Hussein Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2313-2336 | DOI | MR | Numdam | Zbl

[27] Mourtada, Hussein Jet schemes of toric surfaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 9-10, pp. 563-566 | DOI | MR | Numdam | Zbl

[28] Mourtada, Hussein Jet schemes of rational double point singularities, Valuation Theory in Interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 373-388 | MR | DOI | Zbl

[29] Mourtada, Hussein Jet schemes of normal toric surfaces, Bull. Soc. Math. Fr., Volume 145 (2017) no. 2, pp. 237-266 | DOI | MR | Zbl

[30] Mourtada, Hussein; Plénat, Camille Jet schemes and minimal toric embedded resolutions of rational double point singularities, Commun. Algebra, Volume 46 (2018) no. 3, pp. 1314-1332 | DOI | MR | Zbl

[31] Mustaţǎ, Mircea Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (with an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl

[32] Nash, John F. Jr. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 (a celebration of John F. Nash, Jr.) | DOI | MR | Zbl

[33] Pe Pereira, María Nash problem for quotient surface singularities, J. Lond. Math. Soc., Volume 87 (2013) no. 1, pp. 177-203 | DOI | MR | Zbl

[34] Reguera, Ana Arcs and wedges on rational surface singularities, J. Algebra, Volume 366 (2012), pp. 126-164 | DOI | MR | Zbl

[35] Reid, Miles Minimal models of canonical 3-folds, Algebraic Warieties and Analytic Varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 131-180 | DOI | MR | Zbl

[36] Teissier, Bernard The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff, 1977, pp. 565-678 | MR | Zbl

[37] Vojta, Paul Jets via Hasse–Schmidt derivations, Diophantine Geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 4, Edizioni della Normale, 2007, pp. 335-361 | MR | Zbl

[38] de Fernex, Tommaso Three-dimensional counter-examples to the Nash problem, Compos. Math., Volume 149 (2013) no. 9, pp. 1519-1534 | DOI | MR | Zbl

[39] de Fernex, Tommaso The space of arcs of an algebraic variety, Algebraic Geometry (Salt Lake City, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018 no. 1, pp. 169-197 | DOI | MR | Zbl

[40] de Fernex, Tommaso; Docampo, Roi Jacobian discrepancies and rational singularities, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 165-199 | DOI | MR | Zbl

[41] de Fernex, Tommaso; Docampo, Roi Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl

[42] de Fernex, Tommaso; Ein, Lawrence; Ishii, Shihoko Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 425-448 | DOI | MR | Zbl

[43] de Fernex, Tommaso; Ein, Lawrence; Mustaţǎ, Mircea Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003) no. 2-3, pp. 219-236 | DOI | MR | Zbl

[44] The Stacks Project Authors Stacks Project (https://stacks.math.columbia.edu/)

Cité par Sources :