Article de recherche - Géométrie et Topologie
From homogeneous metric spaces to Lie groups
[Des espaces métriques homogènes aux groupes de Lie]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G9, pp. 943-1014

We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.

After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive ϵ, each such space is (1,ϵ)-quasi-isometric to a connected metric Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).

Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group.

Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie groups may be made isometric if and only if they have the same real-shadow.

Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation.

Nous étudions les espaces métriques homogènes, c’est-à-dire, les espaces métriques connexes et localement compacts dont le groupe d’isométries agit transitivement.

Après avoir passé en revue un certain nombre de résultats classiques, nous utilisons la théorie de la structure de Gleason–Iwasawa–Montgomery–Yamabe–Zippin dans le but de montrer que pour tout ϵ positif, chacun des espaces susmentionnés est (1,ϵ)-quasi-isométrique à un groupe de Lie métrique connexe (métrizé par une distance invariante à gauche non nécessairement riemannienne).

Ensuite, nous développons la théorie de la structure des groupes de Lie pour montrer que toute variété métrique homogène est grossièrement isométrique par homéomorphisme au quotient d’un groupe de Lie moyennable, connexe, et grossièrement isométrique à un groupe de Lie métrique résoluble simplement connexe.

Troisièmement, nous étudions plus en détail les groupes de Lie métriques résolubles, et nous développons et étendons les travaux de Gordon et Wilson [31, 32] et de Jablonski [44] sur ceux-ci, en montrant, par exemple, que les groupes de Lie résolubles connexes peuvent être rendus isométriques si et seulement s’ils ont la même ombre réelle.

Enfin, nous montrons que les espaces métriques homogènes qui admettent une homothétie métrique sont tous des groupes de Lie métriques possédant une homothétie automorphe.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.608
Classification : 53C30, 22F30, 20F69, 22E25
Keywords: Homogeneous spaces, Structure, Lie groups
Mots-clés : Espaces homogènes, structure, groupes de Lie

Cowling, Michael G.  1   ; Kivioja, Ville  2   ; Le Donne, Enrico  2 , 3   ; Nicolussi Golo, Sebastiano  2   ; Ottazzi, Alessandro  1

1 School of Mathematics and Statistics, University of New South Wales, UNSW Sydney 2052, Australia
2 Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä FI-40014 Finland
3 Department of Mathematics, University of Fribourg, Fribourg CH-1700 Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G9_943_0,
     author = {Cowling, Michael G. and Kivioja, Ville and Le Donne, Enrico and Nicolussi Golo, Sebastiano and Ottazzi, Alessandro},
     title = {From homogeneous metric spaces to {Lie} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {943--1014},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G9},
     doi = {10.5802/crmath.608},
     zbl = {07939438},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.608/}
}
TY  - JOUR
AU  - Cowling, Michael G.
AU  - Kivioja, Ville
AU  - Le Donne, Enrico
AU  - Nicolussi Golo, Sebastiano
AU  - Ottazzi, Alessandro
TI  - From homogeneous metric spaces to Lie groups
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 943
EP  - 1014
VL  - 362
IS  - G9
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.608/
DO  - 10.5802/crmath.608
LA  - en
ID  - CRMATH_2024__362_G9_943_0
ER  - 
%0 Journal Article
%A Cowling, Michael G.
%A Kivioja, Ville
%A Le Donne, Enrico
%A Nicolussi Golo, Sebastiano
%A Ottazzi, Alessandro
%T From homogeneous metric spaces to Lie groups
%J Comptes Rendus. Mathématique
%D 2024
%P 943-1014
%V 362
%N G9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.608/
%R 10.5802/crmath.608
%G en
%F CRMATH_2024__362_G9_943_0
Cowling, Michael G.; Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano; Ottazzi, Alessandro. From homogeneous metric spaces to Lie groups. Comptes Rendus. Mathématique, Tome 362 (2024) no. G9, pp. 943-1014. doi: 10.5802/crmath.608

[1] Agrachev, A.; Barilari, D. Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst., Volume 18 (2012) no. 1, pp. 21-44 | DOI | MR | Zbl

[2] Auslander, L.; Green, L. W. G-induced flows, Am. J. Math., Volume 88 (1966), pp. 43-60 | DOI | MR | Zbl

[3] Alexopoulos, Georgios K. Sub-Laplacians with drift on Lie groups of polynomial volume growth, Memoirs of the American Mathematical Society, 155, American Mathematical Society, 2002 no. 739, x+101 pages | DOI | MR | Zbl

[4] Alekseevskiĭ, D. V. Homogeneous Riemannian spaces of negative curvature, Math. USSR, Sb., Volume 25 (1975), pp. 87-109 | DOI | Zbl

[5] Antonyan, Sergey A. Characterizing maximal compact subgroups, Arch. Math., Volume 98 (2012) no. 6, pp. 555-560 | DOI | MR | Zbl

[6] Auslander, L.; Tolimieri, R. Splitting theorems and the structure of solvmanifolds, Ann. Math., Volume 92 (1970), pp. 164-173 | DOI | MR | Zbl

[7] Berestovskiĭ, V. N. Homogeneous manifolds with an intrinsic metric. II, Sib. Mat. Zh., Volume 30 (1989) no. 2, p. 14-28, 225 | DOI | MR | Zbl

[8] Bonk, Mario; Kleiner, Bruce Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246 | DOI | MR | Zbl

[9] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer, 2005, xii+434 pages (Translated from the 1975 and 1982 French originals by Andrew Pressley) | MR

[10] Bourdon, Marc Mostow type rigidity theorems, Handbook of group actions. Vol. IV (Advanced Lectures in Mathematics), Volume 41, International Press, 2018, pp. 139-188 | MR | Zbl

[11] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 1–3. Translated from the French, Reprint of the 1975 edition, Elements of Mathematics (Berlin), Springer, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | MR | Zbl

[12] Bourbaki, Nicolas Algebra. II. Chapters 4–7. Translated from the French by P. M. Cohn and J. Howie, Elements of Mathematics (Berlin), Springer, 1990, vii+461 pages | MR | Zbl

[13] Bourdon, Marc Structure conforme au bord et flot géodésique d’un CAT (-1)-espace, Enseign. Math., Volume 41 (1995) no. 1-2, pp. 63-102 | MR | Zbl

[14] Berestovskii, Valera; Plaut, Conrad Covering group theory for topological groups, Topology Appl., Volume 114 (2001) no. 2, pp. 141-186 | DOI | MR | Zbl

[15] Bagley, R. W.; Peyrovian, M. R. A note on compact subgroups of topological groups, Bull. Aust. Math. Soc., Volume 33 (1986) no. 2, pp. 273-278 | DOI | MR | Zbl

[16] Breuillard, Emmanuel Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014) no. 3, pp. 669-732 | DOI | MR | Zbl

[17] Cornulier, Yves; de la Harpe, Pierre Metric geometry of locally compact groups, EMS Tracts in Mathematics, 25, European Mathematical Society, 2016, viii+235 pages | DOI | MR | Zbl

[18] Chevalley, Claude On the topological structure of solvable groups, Ann. Math., Volume 42 (1941), pp. 668-675 | DOI | MR | Zbl

[19] Cornulier, Yves Commability and focal locally compact groups, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 115-150 | DOI | MR | Zbl

[20] de Cornulier, Yves Dimension of asymptotic cones of Lie groups, J. Topol., Volume 1 (2008) no. 2, pp. 342-361 | DOI | MR | Zbl

[21] de Cornulier, Yves On sublinear bilipschitz equivalence of groups, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 5, pp. 1201-1242 | DOI | MR | Zbl | Numdam

[22] Dixmier, J. L’application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. Fr., Volume 85 (1957), pp. 113-121 | DOI | MR | Zbl | Numdam

[23] Dungey, Nick; ter Elst, A. F. M.; Robinson, Derek W. Analysis on Lie groups with polynomial growth, Progress in Mathematics, 214, Birkhäuser, 2003, viii+312 pages | DOI | MR | Zbl

[24] Dantzig, D. van; Waerden, B. L. van der Über metrisch homogene räume, Abh. Math. Semin. Univ. Hamb., Volume 6 (1928) no. 1, pp. 367-376 | MR | DOI | Zbl

[25] Fässler, Katrin; Koskela, Pekka; Le Donne, Enrico Nonexistence of quasiconformal maps between certain metric measure spaces, Int. Math. Res. Not., Volume 16 (2015), pp. 6968-6987 | DOI | MR | Zbl

[26] Fässler, Katrin; Le Donne, Enrico On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups, Geom. Dedicata, Volume 210 (2021), pp. 27-42 | DOI | MR | Zbl

[27] Folland, G. B. Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975) no. 2, pp. 161-207 | MR | Zbl | DOI

[28] Folland, G. B.; Stein, E. M. Estimates for the ¯ b complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | DOI | MR | Zbl

[29] Folland, G. B.; Stein, Elias M. Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press: Princeton, NJ; University of Tokyo Press: Tokyo, 1982, xii+285 pages | MR | Zbl

[30] Glöckner, H. (Mathematics Review MR3365793)

[31] Gromov, Mikhael Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci., Volume 53 (1981), pp. 53-73 | MR | Zbl | DOI | Numdam

[32] Gromov, Mikhael Carnot–Carathéodory spaces seen from within, Sub-Riemannian geometry (Progress in Mathematics), Volume 144, Birkhäuser, 1996, pp. 79-323 | MR | Zbl | DOI

[33] Guivarc’h, Yves Croissance pôlynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., Volume 101 (1973), pp. 333-379 | DOI | MR | Zbl | Numdam

[34] Gordon, Carolyn S.; Wilson, Edward N. The fine structure of transitive Riemannian isometry groups. I, Trans. Am. Math. Soc., Volume 289 (1985) no. 1, pp. 367-380 | DOI | MR | Zbl

[35] Gordon, Carolyn S.; Wilson, Edward N. Isometry groups of Riemannian solvmanifolds, Trans. Am. Math. Soc., Volume 307 (1988) no. 1, pp. 245-269 | DOI | MR | Zbl

[36] Heintze, Ernst On homogeneous manifolds of negative curvature, Math. Ann., Volume 211 (1974), pp. 23-34 | DOI | MR | Zbl

[37] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001, xxvi+641 pages (Corrected reprint of the 1978 original) | Zbl | DOI | MR

[38] Hubbuck, J. R.; Kane, R. M. The homotopy types of compact Lie groups, Isr. J. Math., Volume 51 (1985) no. 1-2, pp. 20-26 | DOI | MR | Zbl

[39] Hofmann, Karl H.; Morris, Sidney A. The structure of compact groups. A primer for the student – a handbook for the expert, Studies in Mathematics, 25, Walter de Gruyter, 2013, xxii+924 pages | DOI | MR | Zbl

[40] Hersonsky, Sa’ar; Paulin, Frédéric On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv., Volume 72 (1997) no. 3, pp. 349-388 | DOI | MR | Zbl

[41] Hewitt, Edwin; Ross, Kenneth A. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Grundlehren der Mathematischen Wissenschaften, 115, Springer, 1963, viii+519 pages | MR | Zbl

[42] Hebisch, Waldemar; Sikora, Adam A smooth subadditive homogeneous norm on a homogeneous group, Stud. Math., Volume 96 (1990) no. 3, pp. 231-236 | DOI | MR | Zbl

[43] Iwasawa, Kenkichi On some types of topological groups, Ann. Math., Volume 50 (1949), pp. 507-558 | DOI | MR | Zbl

[44] Jablonski, Michael Maximal symmetry and unimodular solvmanifolds, Pac. J. Math., Volume 298 (2019) no. 2, pp. 417-427 | Zbl | DOI | MR

[45] Jacobson, Nathan Lie algebras, Dover Publications, 1979, ix+331 pages (Republication of the 1962 original) | MR

[46] Jenkins, J. W. Growth of connected locally compact groups, J. Funct. Anal., Volume 12 (1973), pp. 113-127 | DOI | MR | Zbl

[47] Kehlet, Esben T. Cross sections for quotient maps of locally compact groups, Math. Scand., Volume 55 (1984) no. 1, pp. 152-160 | DOI | MR | Zbl

[48] Kivioja, Ville; Le Donne, Enrico Isometries of nilpotent metric groups, J. Éc. Polytech., Math., Volume 4 (2017), pp. 473-482 | DOI | MR | Zbl | Numdam

[49] Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano Metric equivalences of Heintze groups and applications to classifications in low dimension, Ill. J. Math., Volume 66 (2022) no. 1, pp. 91-121 | DOI | MR | Zbl

[50] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl

[51] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers John Wiley & Sons, Inc., 1969, xv+470 pages | MR | Zbl

[52] Knapp, Anthony W. Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002, xviii+812 pages | MR | Zbl

[53] Le Donne, Enrico; Golo, Sebastiano Nicolussi Metric Lie groups admitting dilations, Ark. Mat., Volume 59 (2021) no. 1, pp. 125-163 | DOI | MR | Zbl

[54] Le Donne, Enrico; Nicolussi Golo, Sebastiano Regularity properties of spheres in homogeneous groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 2057-2084 | DOI | MR | Zbl

[55] Le Donne, Enrico; Rigot, Séverine Besicovitch covering property on graded groups and applications to measure differentiation, J. Reine Angew. Math., Volume 750 (2019), pp. 241-297 | DOI | MR | Zbl

[56] Le Donne, Enrico A metric characterization of Carnot groups, Proc. Am. Math. Soc., Volume 143 (2015) no. 2, pp. 845-849 | DOI | MR | Zbl

[57] Milnor, J. A note on curvature and fundamental group, J. Differ. Geom., Volume 2 (1968), pp. 1-7 | MR | Zbl | DOI

[58] Montgomery, Richard A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | DOI | MR | Zbl

[59] Mostow, G. D. On maximal subgroups of real Lie groups, Ann. Math., Volume 74 (1961), pp. 503-517 | DOI | MR | Zbl

[60] Mostow, G. D. Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press: Princeton, NJ; University of Tokyo Press: Tokyo, 1973, v+195 pages | MR | Zbl

[61] Moskowitz, Martin; Sacksteder, Richard The exponential map and differential equations on real Lie groups, J. Lie Theory, Volume 13 (2003) no. 1, pp. 291-306 | MR | Zbl

[62] Montgomery, Deane; Zippin, Leo Topological transformation groups, Robert E. Krieger Publishing Co., 1974, xi+289 pages (Reprint of the 1955 original) | MR | Zbl

[63] Nomizu, Katsumi Invariant affine connections on homogeneous spaces, Am. J. Math., Volume 76 (1954), pp. 33-65 | DOI | MR | Zbl

[64] Pansu, Pierre Géometrie du groupe d’Heisenberg, Ph. D. Thesis, Université Paris VII (1982)

[65] Pansu, Pierre Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dyn. Syst., Volume 3 (1983) no. 3, pp. 415-445 | DOI | MR | Zbl

[66] Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl

[67] Rothschild, Linda Preiss; Stein, Elias M. Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. 3-4, pp. 247-320 | DOI | MR | Zbl

[68] Samelson, Hans Topology of Lie groups, Bull. Am. Math. Soc., Volume 58 (1952), pp. 2-37 | DOI | MR | Zbl

[69] Siebert, Eberhard Contractive automorphisms on locally compact groups, Math. Z., Volume 191 (1986) no. 1, pp. 73-90 | DOI | MR | Zbl

[70] Stroppel, Markus Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society, 2006, x+302 pages | DOI | MR | Zbl

[71] Szenthe, J. On the topological characterization of transitive Lie group actions, Acta Sci. Math., Volume 36 (1974), pp. 323-344 | MR | Zbl

[72] Tao, Terence Hilbert’s fifth problem and related topics, Graduate Studies in Mathematics, 153, American Mathematical Society, 2014, xiv+338 pages | MR | DOI | Zbl

[73] Varadarajan, V. S. Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, 102, Springer, 1984, xiii+430 pages (Reprint of the 1974 edition) | DOI | MR | Zbl

[74] Wallach, Nolan R. Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, 19, Marcel Dekker, 1973, xv+361 pages | MR | Zbl

[75] Wilson, Edward N. Isometry groups on homogeneous nilmanifolds, Geom. Dedicata, Volume 12 (1982) no. 3, pp. 337-346 | DOI | MR | Zbl

[76] Wolf, Joseph A. Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differ; Geom., Volume 2 (1968), pp. 421-446 | DOI | MR | Zbl

[77] Xie, Xiangdong Large scale geometry of negatively curved n , Geom. Topol., Volume 18 (2014) no. 2, pp. 831-872 | DOI | MR | Zbl

[78] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl

[79] Švarc, A. S. A volume invariant of coverings, Dokl. Akad. Nauk SSSR, n. Ser., Volume 105 (1955), pp. 32-34 | MR | Zbl

Cité par Sources :