[La méthode des caractéristiques-Galerkin duale]
The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and -stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context of this note, it is far superior to all others.
La méthode Dual Characteristic-Galerkin (DCGM) est conservative, précise et expérimentalement positive. Nous prouvons la convergence et la stabilité . Dans le cadre numérique des méthodes d’éléments finis (FEM) en 2D, la méthode est comparée à la méthode Primal Characteristic-Galerkin (PCGM), au Streamline upwinding (SUPG), à la méthode Dual Discontinuous Galerkin (DDG) et à une discretisation FEM sans décentrage. La méthode DCGM est difficile à mettre en œuvre numériquement, mais elle est de loin supérieure à toutes les autres dans le cadre étudié dans cette note.
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.598
Keywords: Partial differential equations, convection-diffusion, numerical method, finite element method
Mots-clés : Équations aux dérivées partielles, convection-diffusion, schémas numériques, éléments finis
Hecht, Frédéric  1 ; Pironneau, Olivier  1
CC-BY 4.0
@article{CRMATH_2024__362_G10_1109_0,
author = {Hecht, Fr\'ed\'eric and Pironneau, Olivier},
title = {The {Dual} {Characteristic-Galerkin} {Method}},
journal = {Comptes Rendus. Math\'ematique},
pages = {1109--1119},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G10},
doi = {10.5802/crmath.598},
zbl = {07939446},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.598/}
}
TY - JOUR AU - Hecht, Frédéric AU - Pironneau, Olivier TI - The Dual Characteristic-Galerkin Method JO - Comptes Rendus. Mathématique PY - 2024 SP - 1109 EP - 1119 VL - 362 IS - G10 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.598/ DO - 10.5802/crmath.598 LA - en ID - CRMATH_2024__362_G10_1109_0 ER -
%0 Journal Article %A Hecht, Frédéric %A Pironneau, Olivier %T The Dual Characteristic-Galerkin Method %J Comptes Rendus. Mathématique %D 2024 %P 1109-1119 %V 362 %N G10 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.598/ %R 10.5802/crmath.598 %G en %F CRMATH_2024__362_G10_1109_0
Hecht, Frédéric; Pironneau, Olivier. The Dual Characteristic-Galerkin Method. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1109-1119. doi: 10.5802/crmath.598
[1] A finite element method for Navier–Stokes equations, Numerical Methods for Non-Linear Problems, Volume 1, Pineridge Press (1980), pp. 709-720
[2] On a conservative upwind finite element scheme for convective diffusion equations, RAIRO, Anal. Numér., Volume 15 (1981) no. 1, pp. 3-25 | Numdam | MR | DOI | Zbl
[3] Finite element methods (Part 1), Handbook of Numerical Analysis, 2, North-Holland, 1991 | Zbl
[4] Discontinuous Galerkin methods for Friedrichs’ systems. I: General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778 | MR | DOI | Zbl
[5] New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | DOI | MR | Zbl
[6] A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993) no. 2, pp. 327-343 | DOI | MR | Zbl
[7] The finite element method. Linear static and dynamic finite element analysis, Prentice Hall, 1987, xxviii+803 pages | MR | Zbl
[8] Arakawa’s method is a finite-element method, J. Comput. Phys., Volume 16 (1974), pp. 383-390 | DOI | MR | Zbl
[9] Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., Volume 45 (1984), pp. 285-312 | MR | DOI | Zbl
[10] Analysis of laminar flow over a backward facing step. A GAMM-Workshop (held on January 18-19, 1983, at Bièvres, France), Notes Numer. Fluid Mech., 9, Springer, 1984 | Zbl
[11] On the transport-diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332 | DOI | MR | Zbl
[12] Computational geometry, Texts and Monographs in Computer Science, Springer, 1985, xii+390 pages (An introduction) | DOI | MR | Zbl
[13] Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Methods Fluids, Volume 64 (2010) no. 10-12, pp. 1240-1253 | DOI | MR | Zbl
[14] Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483 | DOI | MR | Zbl
Cité par Sources :





