Article de recherche - Algorithmes et outils informatiques
The Dual Characteristic-Galerkin Method
[La méthode des caractéristiques-Galerkin duale]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1109-1119

The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and L 2 -stability in the case of Neumann boundary conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context of this note, it is far superior to all others.

La méthode Dual Characteristic-Galerkin (DCGM) est conservative, précise et expérimentalement positive. Nous prouvons la convergence et la stabilité L 2 . Dans le cadre numérique des méthodes d’éléments finis (FEM) en 2D, la méthode est comparée à la méthode Primal Characteristic-Galerkin (PCGM), au Streamline upwinding (SUPG), à la méthode Dual Discontinuous Galerkin (DDG) et à une discretisation FEM sans décentrage. La méthode DCGM est difficile à mettre en œuvre numériquement, mais elle est de loin supérieure à toutes les autres dans le cadre étudié dans cette note.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.598
Classification : 35Q35, 65M06, 65M15, 65M25, 65M60
Keywords: Partial differential equations, convection-diffusion, numerical method, finite element method
Mots-clés : Équations aux dérivées partielles, convection-diffusion, schémas numériques, éléments finis

Hecht, Frédéric  1   ; Pironneau, Olivier  1

1 LJLL, Boite 187, Sorbonne Université, Place Jussieu, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1109_0,
     author = {Hecht, Fr\'ed\'eric and Pironneau, Olivier},
     title = {The {Dual} {Characteristic-Galerkin} {Method}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1109--1119},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G10},
     doi = {10.5802/crmath.598},
     zbl = {07939446},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.598/}
}
TY  - JOUR
AU  - Hecht, Frédéric
AU  - Pironneau, Olivier
TI  - The Dual Characteristic-Galerkin Method
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1109
EP  - 1119
VL  - 362
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.598/
DO  - 10.5802/crmath.598
LA  - en
ID  - CRMATH_2024__362_G10_1109_0
ER  - 
%0 Journal Article
%A Hecht, Frédéric
%A Pironneau, Olivier
%T The Dual Characteristic-Galerkin Method
%J Comptes Rendus. Mathématique
%D 2024
%P 1109-1119
%V 362
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.598/
%R 10.5802/crmath.598
%G en
%F CRMATH_2024__362_G10_1109_0
Hecht, Frédéric; Pironneau, Olivier. The Dual Characteristic-Galerkin Method. Comptes Rendus. Mathématique, Tome 362 (2024) no. G10, pp. 1109-1119. doi: 10.5802/crmath.598

[1] Benque, J. P.; Ibler, B.; Labadie, G. A finite element method for Navier–Stokes equations, Numerical Methods for Non-Linear Problems, Volume 1, Pineridge Press (1980), pp. 709-720

[2] Baba, Kinji; Tabata, Masahisa On a conservative upwind finite element scheme for convective diffusion equations, RAIRO, Anal. Numér., Volume 15 (1981) no. 1, pp. 3-25 | Numdam | MR | DOI | Zbl

[3] Ciarlet, P. G.; Lions, J. L. Finite element methods (Part 1), Handbook of Numerical Analysis, 2, North-Holland, 1991 | Zbl

[4] Ern, A.; Guermond, J.-L. Discontinuous Galerkin methods for Friedrichs’ systems. I: General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778 | MR | DOI | Zbl

[5] Hecht, F. New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | DOI | MR | Zbl

[6] Heston, Steven L. A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993) no. 2, pp. 327-343 | DOI | MR | Zbl

[7] Hughes, Thomas J. R. The finite element method. Linear static and dynamic finite element analysis, Prentice Hall, 1987, xxviii+803 pages | MR | Zbl

[8] Jespersen, Dennis C. Arakawa’s method is a finite-element method, J. Comput. Phys., Volume 16 (1974), pp. 383-390 | DOI | MR | Zbl

[9] Johnson, Claes; Nävert, Uno; Pitkäranta, Juhani Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., Volume 45 (1984), pp. 285-312 | MR | DOI | Zbl

[10] Morgan, Ken; Periaux, Jaques; Thomasset, François Analysis of laminar flow over a backward facing step. A GAMM-Workshop (held on January 18-19, 1983, at Bièvres, France), Notes Numer. Fluid Mech., 9, Springer, 1984 | Zbl

[11] Pironneau, O. On the transport-diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332 | DOI | MR | Zbl

[12] Preparata, Franco P.; Shamos, Michael Ian Computational geometry, Texts and Monographs in Computer Science, Springer, 1985, xii+390 pages (An introduction) | DOI | MR | Zbl

[13] Pironneau, O.; Tabata, M. Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Methods Fluids, Volume 64 (2010) no. 10-12, pp. 1240-1253 | DOI | MR | Zbl

[14] Süli, Endre Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483 | DOI | MR | Zbl

Cité par Sources :