Article de recherche - Analyse et géométrie complexes, Géométrie algébrique
An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
[Un résultat de raréfaction exponentielle pour les courbes algébriques maximales réelles sous-Gaussiennes]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G7, pp. 779-788

We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line bundles.

Nous démontrons que les courbes algébriques réelles maximales associées aux sections holomorphes réelles sous-Gaussiennes d’un faisceau de lignes amples à courbure lisse sont exponentiellement raréfiées. Cela généralise le résultat de Gayet et Welschinger [13] ont prouvé dans le cas Gaussien des faisceaux de lignes holomorphes réels à courbure positive.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.596

Bayraktar, Turgay  1   ; Karaca, Emel  2

1 Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, 34956 Turkey
2 Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, Ankara, 06900 Turkey
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G7_779_0,
     author = {Bayraktar, Turgay and Karaca, Emel},
     title = {An {Exponential} {Rarefaction} {Result} for {Sub-Gaussian} {Real} {Algebraic} {Maximal} {Curves}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--788},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G7},
     doi = {10.5802/crmath.596},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.596/}
}
TY  - JOUR
AU  - Bayraktar, Turgay
AU  - Karaca, Emel
TI  - An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 779
EP  - 788
VL  - 362
IS  - G7
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.596/
DO  - 10.5802/crmath.596
LA  - en
ID  - CRMATH_2024__362_G7_779_0
ER  - 
%0 Journal Article
%A Bayraktar, Turgay
%A Karaca, Emel
%T An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
%J Comptes Rendus. Mathématique
%D 2024
%P 779-788
%V 362
%N G7
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.596/
%R 10.5802/crmath.596
%G en
%F CRMATH_2024__362_G7_779_0
Bayraktar, Turgay; Karaca, Emel. An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves. Comptes Rendus. Mathématique, Tome 362 (2024) no. G7, pp. 779-788. doi: 10.5802/crmath.596

[1] Ancona, M. Exponential rarefaction of maximal real algebraic hypersurfaces (2020) (2009.11951v1)

[2] Bayraktar, T. Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights, Potential Anal., Volume 48 (2018), pp. 459-471 | DOI | Zbl | MR

[3] Bayraktar, T. Mass equidistribution for random polynomials, Potential Anal., Volume 53 (2020), pp. 1403-1421 | DOI | Zbl | MR

[4] Berman, R. J. Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009) no. 5, pp. 1485-1524 | DOI | Zbl | MR

[5] Bedford, E.; Lyubich, M.; Smillie, J. Polynomial diffeomorphisms of C2. IV. The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993), pp. 77-125 | DOI | Zbl | MR

[6] Demailly, J.-P. Complex analytic and differential geometry (https://www.ime.usp.br/~cordaro/wp-content/uploads/2022/03/Jean-Pierre-Demailly-Complex-Analytic-and-Differential-Geometry-1.pdf)

[7] Demailly, J.-P. Courants positifs extrêmaux et conjecture de Hodge, Invent. Math., Volume 69 (1982) no. 3, pp. 347-374 | DOI | Zbl | MR

[8] Demailly, J.-P. Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1990, pp. 87-104 | Zbl | DOI | MR

[9] Diatta, D. N.; Lerario, A. Low-degree approximation of random polynomials, Found. Comput. Math., Volume 22 (2022), pp. 77-97 | DOI | Zbl | MR

[10] Dujardin, R. Laminar currents in P 2 , Math. Ann., Volume 325 (2003), pp. 745-765 | DOI | Zbl | MR

[11] Dujardin, R. Structure properties of laminar currents on P 2 , J. Geom. Anal., Volume 15 (2005) no. 1, pp. 25-47 | DOI | Zbl | MR

[12] Fornæss, J. E.; Sibony, N. Oka’s inequality for currents and applications, Math. Ann., Volume 301 (1995) no. 3, pp. 399-419 | DOI | Zbl | MR

[13] Griffiths, P.; Harris, J. Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978 | Zbl | MR

[14] Gayet, D.; Welschinger, J.-Y. Exponential rarefaction of real curves with many components, Publ. Math., Inst. Hautes Étud. Sci., Volume 113 (2011), pp. 69-96 | DOI | Zbl | Numdam | MR

[15] Hanson, D. L.; Wright, F. T. A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Stat., Volume 42 (1971), pp. 1079-1083 | DOI | Zbl | MR

[16] Rudelson, M.; Vershynin, R. Hanson–Wright inequality and sub-Gaussian concentration, Electron. Commun. Probab., Volume 82 (2013) no. 9, 82 | DOI | Zbl | MR

[17] Shiffman, B.; Zelditch, S. Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | Zbl | MR

[18] Vershynin, R. Introduction to the non-asymptotic analysis of random matrices, Compressed sensing: Theory and Applications, Cambridge University Press, 2012, pp. 210-268 | DOI

[19] Wilson, G. Hilbert’s sixteenth problem, Topology, Volume 17 (1978), pp. 53-73 | DOI | Zbl | MR

[20] Zelditch, S. Quantum ergodic sequences and equilibrium measures, Constr. Approx., Volume 47 (2018) no. 1, pp. 89-118 | DOI | Zbl | MR

Cité par Sources :