[Loi de conservation des applications harmoniques en dimensions surcritiques]
In this short note, we provide a partial extension of Rivière’s convervation law in higher dimensions under certain Lorentz integrability condition for the connection matrix. As an application, we obtain a conservation law for weakly harmonic mappings around regular points in supercritical dimensions.
Dans cette courte note, nous fournissons une extension partielle de la loi de conservation obtenue par Rivière’s en dimensions supérieures, sous certaines conditions d’intégrabilité de Lorentz pour la matrice de connexion. Comme application, nous obtenons une loi de conservation pour les applications faiblement harmoniques autour de points réguliers en dimensions supercritiques.
Accepté le :
Publié le :
Guo, Chang-Yu  1 ; Xiang, Chang-Lin  2
CC-BY 4.0
@article{CRMATH_2024__362_G7_769_0,
author = {Guo, Chang-Yu and Xiang, Chang-Lin},
title = {Conservation law of harmonic mappings in supercritical dimensions},
journal = {Comptes Rendus. Math\'ematique},
pages = {769--773},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G7},
doi = {10.5802/crmath.592},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.592/}
}
TY - JOUR AU - Guo, Chang-Yu AU - Xiang, Chang-Lin TI - Conservation law of harmonic mappings in supercritical dimensions JO - Comptes Rendus. Mathématique PY - 2024 SP - 769 EP - 773 VL - 362 IS - G7 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.592/ DO - 10.5802/crmath.592 LA - en ID - CRMATH_2024__362_G7_769_0 ER -
%0 Journal Article %A Guo, Chang-Yu %A Xiang, Chang-Lin %T Conservation law of harmonic mappings in supercritical dimensions %J Comptes Rendus. Mathématique %D 2024 %P 769-773 %V 362 %N G7 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.592/ %R 10.5802/crmath.592 %G en %F CRMATH_2024__362_G7_769_0
Guo, Chang-Yu; Xiang, Chang-Lin. Conservation law of harmonic mappings in supercritical dimensions. Comptes Rendus. Mathématique, Tome 362 (2024) no. G7, pp. 769-773. doi: 10.5802/crmath.592
[1] Sobolev spaces, Pure and Applied Mathematics, 140, Academic Press Inc., 2003 | Zbl | MR
[2] The weak solutions to the evolution problems of harmonic maps, Math. Z., Volume 201 (1989) no. 1, pp. 69-74 | DOI | Zbl | MR
[3] The conservation law approach in geometric PDEs, Surveys in Geometric Analysis, Volume 2022, Science Press, Beijing, 2023, pp. 51-63
[4] Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002 | Zbl | DOI | MR
[5] Convolution operators and spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | DOI | Zbl | MR
[6] Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007), pp. 1-22 | DOI | Zbl | MR
[7] Partial regularity for harmonic maps and related problems, Commun. Pure Appl. Math., Volume 61 (2008), pp. 451-463 | DOI | Zbl | MR
[8] Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math., Volume 49 (1989), pp. 1722-1733 | DOI | Zbl | MR
[9] Weak solutions and developments of singularities of the SU(2) -model, Commun. Pure Appl. Math., Volume 41 (1988), pp. 459-469 | DOI | Zbl | MR
[10] Connections with bounds on curvature, Commun. Math. Phys., Volume 83 (1982), pp. 31-42 | DOI | Zbl | MR
Cité par Sources :





