Article de recherche - Géométrie algébrique, Théorie des nombres
The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
[La finitude du groupe de Tate–Shafarevich sur les corps de fonctions pour les tores algébriques définis sur le corps de base]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G7, pp. 739-749

Let K be a field and V be a set of rank one valuations of K. The corresponding Tate–Shafarevich group of a K-torus T is Ш(T,V)=ker(H 1 (K,T) vV H 1 (K v ,T)). We prove that if K=k(X) is the function field of a smooth geometrically integral quasi-projective variety over a field k of characteristic 0 and V is the set of discrete valuations of K associated with prime divisors on X, then for any torus T defined over the base field k, the group Ш(T,V) is finite in the following situations: (1) k is finitely generated and X(k); (2) k is a number field.

Soit K un corps et V un ensemble de valuations de rang un de K. Le groupe de Tate–Shafarevich d’un K-tore T est Ш(T,V)=ker(H 1 (K,T) vV H 1 (K v ,T)). Nous montrons que si K=k(X) est le corps de fonctions d’une variété lisse géométriquement intègre quasi-projective définie sur un corps k de caractéristique 0 et que V est l’ensemble des valuations discrètes de K associées aux diviseurs irréductibles de X, alors pour tout tore T défini sur le corps de base k, le groupe Ш(T,V) est fini dans les situations suivantes  : (1) k est de type fini sur le corps premier et X(k) ; (2) k est un corps de nombres.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.588

Rapinchuk, Andrei  1   ; Rapinchuk, Igor  2

1 Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G7_739_0,
     author = {Rapinchuk, Andrei and Rapinchuk, Igor},
     title = {The finiteness of the {Tate{\textendash}Shafarevich} group over function fields for algebraic tori defined over the base field},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {739--749},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G7},
     doi = {10.5802/crmath.588},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.588/}
}
TY  - JOUR
AU  - Rapinchuk, Andrei
AU  - Rapinchuk, Igor
TI  - The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 739
EP  - 749
VL  - 362
IS  - G7
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.588/
DO  - 10.5802/crmath.588
LA  - en
ID  - CRMATH_2024__362_G7_739_0
ER  - 
%0 Journal Article
%A Rapinchuk, Andrei
%A Rapinchuk, Igor
%T The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
%J Comptes Rendus. Mathématique
%D 2024
%P 739-749
%V 362
%N G7
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.588/
%R 10.5802/crmath.588
%G en
%F CRMATH_2024__362_G7_739_0
Rapinchuk, Andrei; Rapinchuk, Igor. The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field. Comptes Rendus. Mathématique, Tome 362 (2024) no. G7, pp. 739-749. doi: 10.5802/crmath.588

[1] Conrad, B. Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc., Volume 22 (2007) no. 3, pp. 205-257 | Zbl | MR

[2] Colliot-Thélène, J.-L.; Sansuc, J.-J. Principal homogeneous spaces under flasque tori; applications, J. Algebra, Volume 106 (1987), pp. 148-205 | DOI | Zbl | MR

[3] Fedorov, R.; Panin, I. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2015), pp. 169-193 | DOI | Zbl | Numdam | MR

[4] Guralnick, R.; Jaffe, D. B.; Raskind, W.; Wiegand, R. On the Picard group: Torsion and the kernel induced by a faithfully flat map, J. Algebra, Volume 183 (1996) no. 2, pp. 420-455 | DOI | Zbl | MR

[5] Ghosh, M.; Krishna, A. Bertini theorems revisited, J. Lond. Math. Soc., Volume 108 (2023) no. 3, pp. 1163-1192 | DOI | Zbl | MR

[6] Guo, N. The Grothendieck–Serre conjecture over semilocal Dedekind rings, Transform. Groups, Volume 27 (2022) no. 3, pp. 897-917 | DOI | Zbl | MR

[7] Görtz, U.; Wedhorn, T. Algebraic geometry I. Schemes. With examples and exercises, Springer Studium Mathematik – Master, Springer, 2020 | Zbl | DOI | MR

[8] Hartshorne, R. Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl | DOI | MR

[9] Harari, D.; Szamuely, T. On Tate–Shafarevich groups of one-dimensional families of commutative group schemes over number fields, Math. Z., Volume 302 (2022) no. 2, pp. 935-948 | DOI | Zbl | MR

[10] Kleiman, S. L.; Altman, A. B. Bertini theorems for hypersurface sections containing a subscheme, Commun. Algebra, Volume 7 (1979), pp. 775-790 | DOI | Zbl | MR

[11] Kahn, B. On the class group of an arithmetic scheme, Bull. Soc. Math. Fr., Volume 134 (2006) no. 3, pp. 395-415 | DOI | Zbl | MR

[12] Lang, S.; Weil, A. Number of points of varieties in finite fields, Am. J. Math., Volume 76 (1954), pp. 819-827 | DOI | Zbl | MR

[13] Lütkebohmert, W. On compactification of schemes, Manuscr. Math., Volume 80 (1993) no. 1, pp. 95-111 | DOI | Zbl | MR

[14] Milne, J. S. Class Field Theory (available on the author’s website at https://www.jmilne.org/math/CourseNotes/cft.html)

[15] Nisnevich, Y. A. Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings, C. R. Math. Acad. Sci. Paris, Volume 299 (1984), pp. 5-8 | Zbl

[16] Platonov, V.; Rapinchuk, A. Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 (transl. from the russian by Rachel Rowen) | Zbl

[17] Rapinchuk, I. A. Simple algebraic groups with good reduction, the genus problem, and unramified cohomology (in preparation)

[18] Rapinchuk, A. S.; Rapinchuk, I. A. Linear algebraic groups with good reduction, Res. Math. Sci., Volume 7 (2020) no. 3, 28 | DOI | Zbl | MR

[19] Rapinchuk, A. S.; Rapinchuk, I. A. Finiteness theorems for algebraic tori over function fields, C. R. Math. Acad. Sci. Paris, Volume 359 (2021) no. 8, pp. 939-944 | DOI | Zbl | Numdam | MR

[20] Rapinchuk, A. S.; Rapinchuk, I. A. Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields, J. Number Theory, Volume 233 (2022), pp. 228-260 | DOI | Zbl | MR

[21] Rapinchuk, A. S.; Rapinchuk, I. A. Properness of the global-to-local map for algebraic groups with toric connected component and other finiteness properties, Math. Res. Lett., Volume 30 (2023) no. 3, pp. 913-943 | DOI | Zbl | MR

[22] Serre, J.-P. Galois cohomology, Springer, 1997 | DOI | MR

[23] Voskresenskiĭ, V. E. Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, 179, American Mathematical Society, 1998 | Zbl | MR

[24] The Stacks Project Authors Stacks Project (https://stacks.math.columbia.edu)

Cité par Sources :