Article de recherche - Théorie spectrale
Infinite volume and atoms at the bottom of the spectrum
[Volume infini et atomes au bas du spectre]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G13, pp. 1873-1880

Let G be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and X the associated Riemannian symmetric space. For any Zariski dense discrete subgroup Γ<G, we prove that Vol(ΓX)= if and only if no positive Laplace eigenfunction belongs to L 2 (ΓX), or equivalently, the bottom of the L 2 -spectrum is not an atom of the spectral measure of the negative Laplacian. This contrasts with the rank one situation where the square-integrability of the base eigenfunction is determined by the size of the critical exponent relative to the volume entropy of X.

Soit G un groupe algébrique réel simple de rang supérieur, ou plus généralement un groupe algébrique réel semi-simple sans facteurs de rang un et X l’espace symétrique riemannien associé. Pour tout sous-groupe discret dense de Zariski Γ<G, on prouve que Vol(ΓX)= si et seulement si aucune fonction propre de Laplacien positive appartient à L 2 (ΓX), ou de manière équivalente, le bas du spectre L 2 n’est pas un atome de la mesure spectrale du Laplacien négatif. Cela contraste avec la situation de rang un où l’intégrabilité au carré de la fonction propre de base est déterminée par la taille de l’exposant critique par rapport à l’entropie volumique de X.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.586
Classification : 22F30, 43A85
Keywords: Laplace eigenfunction, locally symmetric manifolds, infinite volume, Patterson–Sullivan measure
Mots-clés : Fonctions propres de l’opérateur de Laplace–Beltrami, espaces localement symétriques, volume infini, mesures de Patterson–Sullivan

Edwards, Sam  1   ; Fraczyk, Mikolaj  2 , 3   ; Lee, Minju  2   ; Oh, Hee  4

1 Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, United Kingdom
2 Mathematics department, University of Chicago, Chicago, IL 60637, USA
3 Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
4 Mathematics department, Yale university, New Haven, CT 06520, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1873_0,
     author = {Edwards, Sam and Fraczyk, Mikolaj and Lee, Minju and Oh, Hee},
     title = {Infinite volume and atoms at the bottom of the spectrum},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1873--1880},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G13},
     doi = {10.5802/crmath.586},
     zbl = {07962936},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.586/}
}
TY  - JOUR
AU  - Edwards, Sam
AU  - Fraczyk, Mikolaj
AU  - Lee, Minju
AU  - Oh, Hee
TI  - Infinite volume and atoms at the bottom of the spectrum
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1873
EP  - 1880
VL  - 362
IS  - G13
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.586/
DO  - 10.5802/crmath.586
LA  - en
ID  - CRMATH_2024__362_G13_1873_0
ER  - 
%0 Journal Article
%A Edwards, Sam
%A Fraczyk, Mikolaj
%A Lee, Minju
%A Oh, Hee
%T Infinite volume and atoms at the bottom of the spectrum
%J Comptes Rendus. Mathématique
%D 2024
%P 1873-1880
%V 362
%N G13
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.586/
%R 10.5802/crmath.586
%G en
%F CRMATH_2024__362_G13_1873_0
Edwards, Sam; Fraczyk, Mikolaj; Lee, Minju; Oh, Hee. Infinite volume and atoms at the bottom of the spectrum. Comptes Rendus. Mathématique, Tome 362 (2024) no. G13, pp. 1873-1880. doi: 10.5802/crmath.586

[1] Anker, Jean-Philippe; Zhang, Hong-Wei Bottom of the L 2 spectrum of the Laplacian on locally symmetric spaces, Geom. Dedicata, Volume 216 (2022) no. 1, 3, 12 pages | DOI | MR | Zbl

[2] Corlette, Kevin; Iozzi, Alessandra Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 4, pp. 1507-1530 | DOI | MR | Zbl

[3] Connell, Chris; McReynolds, D. B.; Wang, Shi The natural flow and the critical exponent (2023) (https://arxiv.org/abs/2302.12665)

[4] Corlette, Kevin Hausdorff dimensions of limit sets. I, Invent. Math., Volume 102 (1990) no. 3, pp. 521-541 | DOI | MR | Zbl

[5] Edwards, Samuel; Lee, Minju; Oh, Hee Anosov groups: local mixing, counting and equidistribution, Geom. Topol., Volume 27 (2023) no. 2, pp. 513-573 | DOI | MR | Zbl

[6] Elstrodt, Jürgen Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Z., Volume 132 (1973), pp. 99-134 | MR | DOI | Zbl

[7] Elstrodt, Jürgen Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, Math. Ann., Volume 203 (1973), pp. 295-330 | MR | DOI | Zbl

[8] Elstrodt, Jürgen Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. III, Math. Ann., Volume 208 (1974), pp. 99-132 | MR | DOI | Zbl

[9] Edwards, Sam; Oh, Hee Temperedness of L 2 (ΓG) and positive eigenfunctions in higher rank, Commun. Am. Math. Soc., Volume 3 (2023), pp. 744-778 | MR | DOI | Zbl

[10] Fraczyk, Mikolaj; Lee, Minju Discrete subgroups with finite Bowen–Margulis–Sullivan measure in higher rank (2023) (To appear in Geom. Topol., https://arxiv.org/abs/2305.00610)

[11] Grigor’yan, Alexander Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | DOI | MR | Zbl

[12] Hamenstädt, Ursula Small eigenvalues of geometrically finite manifolds, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 281-290 | MR | DOI | Zbl

[13] Laha, R. G. Nonnegative eigen functions of Laplace–Beltrami operators on symmetric spaces, Bull. Am. Math. Soc., Volume 74 (1968), pp. 167-170 | DOI | MR | Zbl

[14] Leuzinger, Enrico Critical exponents of discrete groups and L 2 -spectrum, Proc. Am. Math. Soc., Volume 132 (2004) no. 3, pp. 919-927 | DOI | MR | Zbl

[15] Li, Jialun Finiteness of small eigenvalues of geometrically finite rank one locally symmetric manifolds, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 465-500 | MR | DOI | Zbl

[16] Lax, Peter D.; Phillips, Ralph S. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal., Volume 46 (1982) no. 3, pp. 280-350 | DOI | MR | Zbl

[17] Patterson, S. J. The Laplacian operator on a Riemann surface, Compos. Math., Volume 31 (1975) no. 1, pp. 83-107 | MR | Zbl | Numdam

[18] Patterson, S. J. The Laplacian operator on a Riemann surface. II, Compos. Math., Volume 32 (1976) no. 1, pp. 71-112 | MR | Zbl | Numdam

[19] Patterson, S. J. The Laplacian operator on a Riemann surface. III, Compos. Math., Volume 33 (1976) no. 3, pp. 227-259 | MR | Zbl | Numdam

[20] Patterson, S. J. The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl

[21] Quint, J.-F. Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809 | Zbl | DOI | MR

[22] Sullivan, Dennis A decade of Thurston stories, What’s next? – the mathematical legacy of William P. Thurston (Annals of Mathematics Studies), Volume 205, Princeton University Press, 2020, pp. 415-421 | DOI | MR | Zbl

[23] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | MR | DOI | Zbl | Numdam

[24] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984) no. 3-4, pp. 259-277 | DOI | MR | Zbl

[25] Sullivan, Dennis Related aspects of positivity in Riemannian geometry, J. Differ. Geom., Volume 25 (1987) no. 3, pp. 327-351 | DOI | MR | Zbl

[26] Weich, Tobias; Wolf, Lasse L. Absence of principal eigenvalues for higher rank locally symmetric spaces, Commun. Math. Phys., Volume 403 (2023) no. 3, pp. 1275-1295 | DOI | MR | Zbl

[27] Weich, Tobias; Wolf, Lasse L. Temperedness of locally symmetric spaces: the product case, Geom. Dedicata, Volume 218 (2024) no. 3, 76, 20 pages | DOI | MR | Zbl

[28] Zimmer, Robert J. Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl

Cité par Sources :