Article de recherche - Algèbre
Universal support for triangulated categories
[Support universel pour les catégories triangulées]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G6, pp. 635-637

We revisit a result of Gratz and Stevenson on the universal space that carries supports for objects of a triangulated category, in the absence of a tensor product.

Nous revisitons un résultat de Gratz et Stevenson au sujet de l’espace universel équipé de supports pour les objets d’une catégorie triangulée, en l’absence d’un produit tensoriel.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.576
Classification : 18F99, 18G80

Balmer, Paul  1   ; Sanchez Ocal, Pablo  1

1 UCLA Mathematics Department, BOX 951555, Los Angeles, CA 90095-1555, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G6_635_0,
     author = {Balmer, Paul and Sanchez Ocal, Pablo},
     title = {Universal support for triangulated categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {635--637},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G6},
     doi = {10.5802/crmath.576},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.576/}
}
TY  - JOUR
AU  - Balmer, Paul
AU  - Sanchez Ocal, Pablo
TI  - Universal support for triangulated categories
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 635
EP  - 637
VL  - 362
IS  - G6
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.576/
DO  - 10.5802/crmath.576
LA  - en
ID  - CRMATH_2024__362_G6_635_0
ER  - 
%0 Journal Article
%A Balmer, Paul
%A Sanchez Ocal, Pablo
%T Universal support for triangulated categories
%J Comptes Rendus. Mathématique
%D 2024
%P 635-637
%V 362
%N G6
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.576/
%R 10.5802/crmath.576
%G en
%F CRMATH_2024__362_G6_635_0
Balmer, Paul; Sanchez Ocal, Pablo. Universal support for triangulated categories. Comptes Rendus. Mathématique, Tome 362 (2024) no. G6, pp. 635-637. doi: 10.5802/crmath.576

[1] Balmer, P. The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., Volume 588 (2005), pp. 149-168 | DOI | Zbl | MR

[2] Bakke Buan, A.; Krause, H.; Solberg, Ø. Support varieties: an ideal approach, Homology Homotopy Appl., Volume 9 (2007) no. 1, pp. 45-74 | Zbl | DOI | MR

[3] Brüning, K. Thick subcategories of the derived category of a hereditary algebra, Homology Homotopy Appl., Volume 9 (2007) no. 2, pp. 165-176 | DOI | Zbl | MR

[4] Gratz, S.; Stevenson, G. Approximating triangulated categories by spaces, Adv. Math. (2023), 109073 | DOI | Zbl | MR

[5] Krause, H. An analogue of Stone duality via support (2023) (https://arxiv.org/abs/2307.12391)

[6] Kock, J.; Wolfgang, P. Hochster duality in derived categories and point-free reconstruction of schemes, Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 223-261 | DOI | Zbl

Cité par Sources :