Article de recherche - Combinatoire, théorie des nombres
Correct order on some certain weighted representation functions
[L’ordre correct de certaines fonctions de représentation pondérées]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G5, pp. 547-552

Let be the set of all nonnegative integers. For any positive integer k and any subset A of nonnegative integers, let r 1,k (A,n) be the number of solutions (a 1 ,a 2 ) to the equation n=a 1 +ka 2 . In 2016, Qu proved that

lim inf n r 1,k (A,n)=

providing that r 1,k (A,n)=r 1,k (A,n) for all sufficiently large integers, which answered affirmatively a 2012 problem of Yang and Chen. In a very recent article, another Chen (the first named author) slightly improved Qu’s result and obtained that

lim inf n r 1,k (A,n) logn>0.

In this note, we further improve the lower bound on r 1,k (A,n) by showing that

lim inf n r 1,k (A,n) n>0.

Our bound reflects the correct order of magnitude of the representation function r 1,k (A,n) under the above restrictions due to the trivial fact that r 1,k (A,n)n/k.

Soit l’ensemble de tous les entiers non négatifs. Pour tout entier positif k et tout sous-ensemble A d’entiers non négatifs, notons r 1,k (A,n) le nombre de solutions (a 1 ,a 2 ) de l’équation n=a 1 +ka 2 . En 2016, Qu a prouvé que

lim inf n r 1,k (A,n)=

ce qui signifie que r 1,k (A,n)=r 1,k (A,n) pour tous les entiers suffisamment grands, ce qui répondait par l’affirmative à un problème de Yang et Chen datant de 2012. Dans un article très récent, un autre Chen (le premier auteur dans notre article) a légèrement amélioré le résultat de Qu et obtenu que

lim inf n r 1,k (A,n) logn>0.

Dans cette note, nous améliorons encore le minorant de r 1,k (A,n) en montrant que

lim inf n r 1,k (A,n) n>0.

Notre limite reflète l’ordre de grandeur correct de la fonction de représentation r 1,k (A,n) sous les restrictions ci-dessus en raison du fait trivial que r 1,k (A,n)n/k.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.573
Classification : 11B34, 11A41
Keywords: representation functions, order of functions, partitions of integers
Mots-clés : fonctions de représentation, ordre des fonctions, partitions d’entiers

Chen, Shi-Qiang  1   ; Ding, Yuchen  2   ; Lü, Xiaodong  2   ; Zhang, Yuhan  2

1 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, People’s Republic of China
2 School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G5_547_0,
     author = {Chen, Shi-Qiang and Ding, Yuchen and L\"u, Xiaodong and Zhang, Yuhan},
     title = {Correct order on some certain weighted representation functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {547--552},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G5},
     doi = {10.5802/crmath.573},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.573/}
}
TY  - JOUR
AU  - Chen, Shi-Qiang
AU  - Ding, Yuchen
AU  - Lü, Xiaodong
AU  - Zhang, Yuhan
TI  - Correct order on some certain weighted representation functions
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 547
EP  - 552
VL  - 362
IS  - G5
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.573/
DO  - 10.5802/crmath.573
LA  - en
ID  - CRMATH_2024__362_G5_547_0
ER  - 
%0 Journal Article
%A Chen, Shi-Qiang
%A Ding, Yuchen
%A Lü, Xiaodong
%A Zhang, Yuhan
%T Correct order on some certain weighted representation functions
%J Comptes Rendus. Mathématique
%D 2024
%P 547-552
%V 362
%N G5
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.573/
%R 10.5802/crmath.573
%G en
%F CRMATH_2024__362_G5_547_0
Chen, Shi-Qiang; Ding, Yuchen; Lü, Xiaodong; Zhang, Yuhan. Correct order on some certain weighted representation functions. Comptes Rendus. Mathématique, Tome 362 (2024) no. G5, pp. 547-552. doi: 10.5802/crmath.573

[1] Bell, J. P.; Shallit, J. Counterexamples to a conjecture of Dombi in additive number theory, Acta Math. Hung., Volume 169 (2023), pp. 562-565 | DOI | Zbl | MR

[2] Chen, S.-Q. The lower bound of weighted representation function (preprint), to appear in Period. Math. Hungar | arXiv

[3] Chen, Y.-G. On the values of representation functions, Sci. China, Math., Volume 54 (2011) no. 7, pp. 1317-1331 | DOI | Zbl | MR

[4] Chen, Y.-G.; Tang, M. Partitions of natural numbers with the same representation functions, J. Number Theory, Volume 129 (2009), pp. 2689-2695 | DOI | Zbl | MR

[5] Chen, Y.-G.; Wang, B. On additive properties of two special sequences, Acta Arith., Volume 110 (2003), pp. 299-303 | DOI | Zbl | MR

[6] Dombi, G. Additive properties of certain sets, Acta Arith., Volume 103 (2002), pp. 137-146 | DOI | Zbl | MR

[7] Lev, V. F. Reconstructing integer sets from their representation functions, Electron. J. Comb., Volume 11 (2004) no. 1, R78 | Zbl | MR

[8] Li, Y.-L.; Ma, W.-X. Partitions of natural numbers with the same weighted representation functions, Colloq. Math., Volume 159 (2020), pp. 1-5 | DOI | Zbl | MR

[9] Qu, Z. A note on representation functions with different weights, Colloq. Math., Volume 143 (2016), pp. 105-112 | Zbl | MR

[10] Shallit, J. A Dombi counterexample with positive lower density, Integers, Volume 23 (2023), #A74 | DOI | MR

[11] Sárközy, A.; Sós, V. T. On additive representation functions, The mathematics of Paul Erdős. Vol. I. (Graham, Ronald L. et al., eds.) (Algorithms and Combinatorics), Volume 13, Springer, 1997, pp. 129-150 | DOI | Zbl | MR

[12] Sándor, C. Partitions of natural numbers and their representation functions, Integers, Volume 4 (2004), A18 | Zbl | MR

[13] Tang, M. Partitions of the set of natural numbers and their representation functions, Discrete Math., Volume 308 (2008), pp. 2614-2616 | DOI | Zbl | MR

[14] Yang, Q.-H. Representation functions with different weights, Colloq. Math., Volume 137 (2014), pp. 1-6 | DOI | Zbl | MR

[15] Yang, Q.-H.; Chen, Y.-G. Partitions of natural numbers with the same weighted representation functions, J. Number Theory, Volume 132 (2012), pp. 3047-3055 | DOI | Zbl | MR

Cité par Sources :