[Sur le problème 155 du Scottish Book par Mazur et Sternbach]
Problem 155 of the Scottish Book asks whether every bijection between two Banach spaces with the property that, each point of has a neighborhood on which is isometric, is globally isometric on . We prove that this is true under the additional assumption that is separable and the weaker assumption of surjectivity instead of bijectivity.
Le problème 155 du Scottish Book demande si toute bijection entre deux espaces de Banach ayant la propriété que chaque point de a un voisinage sur lequel U est isométrique, est globalement isométrique sur . Nous prouvons que ceci est vrai sous l’hypothèse supplémentaire que est séparable et l’hypothèse plus faible de surjectivité au lieu de bijectivité.
Révisé le :
Accepté le :
Publié le :
Mori, Michiya  1 , 2
CC-BY 4.0
@article{CRMATH_2024__362_G8_813_0,
author = {Mori, Michiya},
title = {On the {Scottish} {Book} {Problem} 155 by {Mazur} and {Sternbach}},
journal = {Comptes Rendus. Math\'ematique},
pages = {813--816},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G8},
doi = {10.5802/crmath.572},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.572/}
}
TY - JOUR AU - Mori, Michiya TI - On the Scottish Book Problem 155 by Mazur and Sternbach JO - Comptes Rendus. Mathématique PY - 2024 SP - 813 EP - 816 VL - 362 IS - G8 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.572/ DO - 10.5802/crmath.572 LA - en ID - CRMATH_2024__362_G8_813_0 ER -
%0 Journal Article %A Mori, Michiya %T On the Scottish Book Problem 155 by Mazur and Sternbach %J Comptes Rendus. Mathématique %D 2024 %P 813-816 %V 362 %N G8 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.572/ %R 10.5802/crmath.572 %G en %F CRMATH_2024__362_G8_813_0
Mori, Michiya. On the Scottish Book Problem 155 by Mazur and Sternbach. Comptes Rendus. Mathématique, Tome 362 (2024) no. G8, pp. 813-816. doi: 10.5802/crmath.572
[1] On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys., Volume 20 (1972), pp. 367-371 | Zbl | MR
[2] The Scottish Book. Mathematics from the Scottish Café. With selected problems from the New Scottish Book, Birkhäuser/Springer, 2015 | Zbl | DOI
[3] Sur les transformationes isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, Volume 194 (1932), pp. 946-948 | Zbl
[4] General Topology, Dover Publications, Mineola, 2004 | Zbl | MR
Cité par Sources :





