Article de recherche - Informatique théorique, Systèmes dynamiques
Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups BS(1,n)
[Pavages hyperboliques engendrés par une substitution comme sous-décalages de type fini sur les groupes de Baumslag–Solitar BS(1,n)]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G5, pp. 553-580

We present a technique to lift some tilings of the discrete hyperbolic plane –tilings defined by a 1D substitution– into a zero entropy subshift of finite type (SFT) on non-abelian amenable groups BS(1,n) for n2. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application we construct a strongly aperiodic SFT on BS(1,n) with a hierarchical structure, which is an analogue of Robinson’s construction on  2 or Goodman–Strauss’s on  2 .

Nous présentons une technique pour relever certains pavages du plan hyperbolique discret, ceux définis par une substitution 1D, au sein d’un sous-décalage de type fini (SFT) d’entropie nulle sur les groupes de Baumslag–Solitar moyennables et non abéliens BS(1,n) avec n2. Lorsque ces pavages hyperboliques sont bien choisis, on montre que ce SFT est également apériodique et minimal. En guise d’application nous construisons un SFT fortement apériodique sur BS(1,n) avec une structure hiérarchique, qui est l’analogue de la construction de Robinson sur  2 ou de celle de Goodman–Strauss sur  2 .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.571
Classification : 37B10, 20F99

Aubrun, Nathalie  1   ; Schraudner, Michael  2

1 Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France
2 Centro de Modelamiento Matemático, Universidad de Chile, Av. Blanco Encalada 2120, Piso 7, Santiago de Chile
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G5_553_0,
     author = {Aubrun, Nathalie and Schraudner, Michael},
     title = {Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on {Baumslag{\textendash}Solitar} groups $\mathit{BS}(1,n)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {553--580},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G5},
     doi = {10.5802/crmath.571},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.571/}
}
TY  - JOUR
AU  - Aubrun, Nathalie
AU  - Schraudner, Michael
TI  - Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 553
EP  - 580
VL  - 362
IS  - G5
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.571/
DO  - 10.5802/crmath.571
LA  - en
ID  - CRMATH_2024__362_G5_553_0
ER  - 
%0 Journal Article
%A Aubrun, Nathalie
%A Schraudner, Michael
%T Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$
%J Comptes Rendus. Mathématique
%D 2024
%P 553-580
%V 362
%N G5
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.571/
%R 10.5802/crmath.571
%G en
%F CRMATH_2024__362_G5_553_0
Aubrun, Nathalie; Schraudner, Michael. Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag–Solitar groups $\mathit{BS}(1,n)$. Comptes Rendus. Mathématique, Tome 362 (2024) no. G5, pp. 553-580. doi: 10.5802/crmath.571

[1] Aubrun, N.; Bitar, N.; Huriot-Tattegrain, S. Strongly aperiodic SFTs on generalized Baumslag–Solitar groups, Ergodic Theory Dyn. Syst. (2023) | DOI

[2] Aubrun, N.; Barbieri, S.; Moutot, E. The Domino Problem is Undecidable on Surface Groups, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), Volume 138 (2019), 46 | Zbl | DOI | MR

[3] Aubrun, N.; Barbieri, S.; Thomassé, S. Realization of aperiodic subshifts and uniform densities in groups, Groups Geom. Dyn., Volume 13 (2018) no. 1, pp. 107-129 | DOI | MR | Zbl

[4] Aubrun, N.; Kari, J. Tiling Problems on Baumslag-Solitar groups, Proceedings of the conference on machines, computations and universality 2013, MCU 2013 (Neary, Turlough et al., eds.) (Electronic Proceedings in Theoretical Computer Science), Volume 128, Open Publishing Association (2013), pp. 35-46 | Zbl | MR

[5] Aubrun, N.; Kari, J. On the domino problem of the Baumslag-Solitar groups, Theor. Comput. Sci., Volume 894 (2021), pp. 12-22 (Building Bridges – Honoring Nataša Jonoska on the Occasion of Her 60th Birthday) | DOI | Zbl | MR

[6] Barbieri, S. On the entropies of subshifts of finite type on countable amenable groups, Groups Geom. Dyn., Volume 15 (2021) no. 2, pp. 607-638 | DOI | Zbl | MR

[7] Barbieri, S.; Sablik, M. A generalization of the simulation theorem for semidirect products, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 12, pp. 3185-3206 | DOI | Zbl | MR

[8] Cohen, D. B.; Goodman-Strauss, C. Strongly aperiodic subshifts on surface groups, Groups Geom. Dyn., Volume 11 (2017) no. 3, pp. 1041-1059 | DOI | Zbl | MR

[9] Cohen, D. B.; Goodman-Strauss, C.; Rieck, Y. Strongly aperiodic subshifts of finite type on hyperbolic groups, Ergodic Theory Dyn. Syst., Volume 42 (2021) no. 9, pp. 2740-2783 | DOI | Zbl | MR

[10] Culik, K.; Kari, J. An aperiodic set of Wang cubes, J. UCS The Journal of Universal Computer Science: Annual Print and CD-ROM Archive Edition Volume 1 • 1995 (Maurer, H.; Calude, C.; Salomaa, A., eds.), Springer, 1996, pp. 675-686 | DOI | Zbl

[11] Esnay, S. J.; Moutot, E. Aperiodic SFTs on Baumslag-Solitar groups, Theor. Comput. Sci., Volume 917 (2022), pp. 31-50 | DOI | Zbl | MR

[12] Farb, B.; Mosher, L. A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math., Volume 131 (1998), pp. 419-451 | DOI | Zbl | MR

[13] Gao, S.; Jackson, S.; Seward, B. A coloring property for countable groups, Math. Proc. Camb. Philos. Soc., Volume 147 (2009), pp. 579-592 | DOI | Zbl | MR

[14] Goodman-Strauss, C. A strongly aperiodic set of tiles in the hyperbolic plane, Invent. Math., Volume 159 (2004) no. 1, pp. 119-132 | DOI | Zbl | MR

[15] Goodman-Strauss, C. A hierarchical strongly aperiodic set of tiles in the hyperbolic plane, Theor. Comput. Sci., Volume 411 (2010) no. 7, pp. 1085-1093 | DOI | Zbl | MR

[16] Jeandel, E. Aperiodic Subshifts of Finite Type on Groups (2015) | arXiv

[17] Kari, J. A small aperiodic set of Wang tiles, Discrete Math., Volume 160 (1996) no. 1, pp. 259-264 | DOI | Zbl | MR

[18] Lyndon, R. C.; Schupp, P. E. Combinatorial Group Theory, Classics in Mathematics, Springer, 2001 | DOI | Zbl

[19] Muller, D. E.; Schupp, P. E. The theory of ends, pushdown automata, and second-order logic, Theor. Comput. Sci., Volume 37 (1985), pp. 51-75 | DOI | Zbl | MR

[20] Ornstein, D. S.; Weiss, B. Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., Volume 48 (1987) no. 1, pp. 1-141 | DOI | Zbl | MR

[21] Robinson, R. Undecidability and nonperiodicity for tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209 | Zbl | MR | DOI

[22] Whyte, K. The large scale geometry of the higher Baumslag-Solitar groups, Geom. Funct. Anal., Volume 11 (2001), pp. 1327-1343 | DOI | Zbl | MR

[23] Şahin, A. A.; Schraudner, M.; Ugarcovici, I. A strongly aperiodic shift of finite type on the discrete Heisenberg group using Robinson tilings, Ill. J. Math., Volume 65 (2021) no. 3, pp. 655-686 | DOI | Zbl | MR

Cité par Sources :