Article de recherche - Théorie des nombres
Hankel determinants and Jacobi continued fractions for q-Euler numbers
Comptes Rendus. Mathématique, Tome 362 (2024) no. G2, pp. 203-216

The q-analogs of Bernoulli and Euler numbers were introduced by Carlitz in 1948. Similar to recent results on the Hankel determinants for the q-Bernoulli numbers established by Chapoton and Zeng, we perform a parallel analysis for the q-Euler numbers. It is shown that the associated orthogonal polynomials for q-Euler numbers are given by a specialization of the big q-Jacobi polynomials, thereby leading to their corresponding Jacobi continued fraction expressions, which eventually serve as a key to our determinant evaluations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.569
Classification : 11B68, 11C20, 30B70, 33D45

Chern, Shane  1   ; Jiu, Lin  2

1 Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
2 Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Suzhou, Jiangsu Province, 215316, PR China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G2_203_0,
     author = {Chern, Shane and Jiu, Lin},
     title = {Hankel determinants and {Jacobi} continued fractions for $q${-Euler} numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {203--216},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G2},
     doi = {10.5802/crmath.569},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.569/}
}
TY  - JOUR
AU  - Chern, Shane
AU  - Jiu, Lin
TI  - Hankel determinants and Jacobi continued fractions for $q$-Euler numbers
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 203
EP  - 216
VL  - 362
IS  - G2
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.569/
DO  - 10.5802/crmath.569
LA  - en
ID  - CRMATH_2024__362_G2_203_0
ER  - 
%0 Journal Article
%A Chern, Shane
%A Jiu, Lin
%T Hankel determinants and Jacobi continued fractions for $q$-Euler numbers
%J Comptes Rendus. Mathématique
%D 2024
%P 203-216
%V 362
%N G2
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.569/
%R 10.5802/crmath.569
%G en
%F CRMATH_2024__362_G2_203_0
Chern, Shane; Jiu, Lin. Hankel determinants and Jacobi continued fractions for $q$-Euler numbers. Comptes Rendus. Mathématique, Tome 362 (2024) no. G2, pp. 203-216. doi: 10.5802/crmath.569

[1] Al-Salam, Waleed A.; Carlitz, Leonard Some determinants of Bernoulli, Euler and related numbers, Port. Math., Volume 18 (1959), pp. 91-99 | MR | Zbl

[2] Andrews, George E. The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, 1998, xvi+255 pages

[3] Andrews, George E.; Askey, Richard Classical orthogonal polynomials, Polynômes orthogonaux et applications (Bar-le-Duc, 1984) (Lecture Notes in Mathematics), Volume 1171, Springer, 1985, pp. 36-62 | Zbl | MR | DOI

[4] Carlitz, Leonard q-Bernoulli numbers and polynomials, Duke Math. J., Volume 15 (1948), pp. 987-1000 | MR | Zbl

[5] Chapoton, Frédéric; Essouabri, Driss q-Ehrhart polynomials of Gorenstein polytopes, Bernoulli umbra and related Dirichlet series, Mosc. J. Comb. Number Theory, Volume 5 (2015) no. 4, pp. 13-38 | Zbl | MR

[6] Chapoton, Frédéric; Krattenthaler, Christian; Zeng, Jiang Moments of q-Jacobi polynomials and q-zeta values (2020) | arXiv

[7] Chapoton, Frédéric; Zeng, Jiang Nombres de q-Bernoulli–Carlitz et fractions continues, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 2, pp. 347-368 | DOI | MR | Numdam | Zbl

[8] Chihara, Theodore S. An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, 1978

[9] Dilcher, Karl; Jiu, Lin Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials, J. Math. Anal. Appl., Volume 497 (2021) no. 1, 124855, 19 pages | MR | Zbl

[10] Dilcher, Karl; Jiu, Lin Hankel determinants of sequences related to Bernoulli and Euler polynomials, Int. J. Number Theory, Volume 18 (2022) no. 2, pp. 331-359 | DOI | MR | Zbl

[11] Favard, Jean Sur les polynômes de Tchebicheff, C. R. Acad. Sci. Paris, Volume 200 (1935), pp. 2052-2053 | Zbl

[12] Gangi, Anthony F.; Shapiro, James N. A propagating algorithm for determining nth-order polynomial, least-squares fits, Geophysics, Volume 42 (1977) no. 6, pp. 1265-1276 | DOI

[13] Gasper, George; Rahman, Mizan Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, 2004 | DOI

[14] Heilermann, J. B. Hermann Ueber die Verwandlung der Reihen in Kettenbrüche, J. Reine Angew. Math., Volume 33 (1846), pp. 174-188 | Zbl

[15] Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer, 2010, xix+578 pages | DOI

[16] Krattenthaler, Christian Advanced determinant calculus, Sémin. Lothar. Comb., Volume 42 (1999), B42q, 67 pages | MR | Zbl

[17] Krattenthaler, Christian Advanced determinant calculus: a complement, Linear Algebra Appl., Volume 411 (2005) no. 6, pp. 68-166 | DOI | MR | Zbl

[18] Marcellán, Francisco; Álvarez-Nodarse, Renato On the “Favard theorem” and its extensions, J. Comput. Appl. Math., Volume 127 (2001) no. 1-2, pp. 231-254 | Zbl | DOI | MR

[19] Muir, Thomas; Metzler, William H. A treatise on the theory of determinants, Dover Publications, 1960

[20] Stieltjes, Thomas-Jan Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, Math., Volume 8 (1894) no. 4, p. J1-J122 | DOI | MR | Numdam

[21] Strobach, Peter Square Hankel SVD subspace tracking algorithms, Signal Process., Volume 57 (1997) no. 1, pp. 1-18 | DOI | Zbl

[22] Wall, Hubert S. Analytic theory of continued fractions, D. Van Nostrand Co., Inc., 1948

Cité par Sources :