Article de recherche - Équations aux dérivées partielles
Dirichlet problems with skew-symmetric drift terms
[Problèmes de Dirichlet avec des termes de drift asymétriques]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 301-306

We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form AE(x)u+div(uE(x)), with A>0 and E in (L r (Ω)) N . The result is obtained using a nonlinear function of u as test function, in order to “cancel” this term.

Nous prouvons l’existence de solutions d’énergie finie pour un problème de Dirichlet linéaire avec un terme de la forme AE(x)u+div(uE(x)), où A>0 et E est dans (L r (Ω)) N . Le résultat est obtenu en utilisant une fonction non linéaire de u comme fonction test, afin d’“annuler” ce terme.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.564
Keywords: Singular drift, Dirichlet problems, nonlinear test functions

Boccardo, Lucio  1   ; Casado-Diaz, Juan  2   ; Orsina, Luigi  3

1 Istituto Lombardo & Sapienza Università di Roma, Italy
2 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
3 Dipartimento di Matematica, Sapienza Università di Roma, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G3_301_0,
     author = {Boccardo, Lucio and Casado-Diaz, Juan and Orsina, Luigi},
     title = {Dirichlet problems with skew-symmetric drift terms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {301--306},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G3},
     doi = {10.5802/crmath.564},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.564/}
}
TY  - JOUR
AU  - Boccardo, Lucio
AU  - Casado-Diaz, Juan
AU  - Orsina, Luigi
TI  - Dirichlet problems with skew-symmetric drift terms
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 301
EP  - 306
VL  - 362
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.564/
DO  - 10.5802/crmath.564
LA  - en
ID  - CRMATH_2024__362_G3_301_0
ER  - 
%0 Journal Article
%A Boccardo, Lucio
%A Casado-Diaz, Juan
%A Orsina, Luigi
%T Dirichlet problems with skew-symmetric drift terms
%J Comptes Rendus. Mathématique
%D 2024
%P 301-306
%V 362
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.564/
%R 10.5802/crmath.564
%G en
%F CRMATH_2024__362_G3_301_0
Boccardo, Lucio; Casado-Diaz, Juan; Orsina, Luigi. Dirichlet problems with skew-symmetric drift terms. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 301-306. doi: 10.5802/crmath.564

[1] Bénilan, Philippe; Boccardo, Lucio; Gallouët, Thierry; Gariepy, Ron; Pierre, Michel; Vázquez, Juan Luis An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (1995) no. 2, pp. 241-273 | MR

[2] Boccardo, Lucio Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital. (9), Volume 2 (2009) no. 1, pp. 285-297 | MR

[3] Boccardo, Lucio Dirichlet problems with singular convection terms and applications, J. Differ. Equations, Volume 258 (2015) no. 7, pp. 2290-2314 | DOI | MR

[4] Boccardo, Lucio Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift, ESAIM, Control Optim. Calc. Var., Volume 25 (2019), 47, 13 pages | DOI | MR

[5] Boccardo, Lucio Weak maximum principle for Dirichlet problems with convection or drift terms, Math. Eng., Volume 3 (2021) no. 3, 026, 9 pages | DOI | MR | Zbl

[6] Boccardo, Lucio The impact of the zero order term in the study of Dirichlet problems with convection or drift terms, Rev. Mat. Complut., Volume 36 (2023) no. 2, pp. 571-605 | DOI | MR

[7] Boccardo, Lucio; Gallouët, Thierry Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989) no. 1, pp. 149-169 | DOI | MR

[8] Briane, Marc; Casado-Díaz, Juan A class of second-order linear elliptic equations with drift: renormalized solutions, uniqueness and homogenization, Potential Anal., Volume 43 (2015) no. 3, pp. 399-413 | DOI | MR

[9] Briane, Marc; Gérard, Patrick A drift homogenization problem revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (2012) no. 1, pp. 1-39 | MR | Numdam

[10] Dal Maso, Gianni; Murat, François; Orsina, Luigi; Prignet, Alain Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 28 (1999) no. 4, pp. 741-808 | MR | Numdam

[11] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (reprint of the 1998 edition) | MR | DOI

[12] Stampacchia, Guido Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Volume 15 (1965) no. 1, pp. 189-258 | MR | DOI | Numdam

Cité par Sources :