[Problèmes de Dirichlet avec des termes de drift asymétriques]
We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form , with and in . The result is obtained using a nonlinear function of as test function, in order to “cancel” this term.
Nous prouvons l’existence de solutions d’énergie finie pour un problème de Dirichlet linéaire avec un terme de la forme , où et est dans . Le résultat est obtenu en utilisant une fonction non linéaire de comme fonction test, afin d’“annuler” ce terme.
Révisé le :
Accepté le :
Publié le :
Boccardo, Lucio  1 ; Casado-Diaz, Juan  2 ; Orsina, Luigi  3
CC-BY 4.0
@article{CRMATH_2024__362_G3_301_0,
author = {Boccardo, Lucio and Casado-Diaz, Juan and Orsina, Luigi},
title = {Dirichlet problems with skew-symmetric drift terms},
journal = {Comptes Rendus. Math\'ematique},
pages = {301--306},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G3},
doi = {10.5802/crmath.564},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.564/}
}
TY - JOUR AU - Boccardo, Lucio AU - Casado-Diaz, Juan AU - Orsina, Luigi TI - Dirichlet problems with skew-symmetric drift terms JO - Comptes Rendus. Mathématique PY - 2024 SP - 301 EP - 306 VL - 362 IS - G3 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.564/ DO - 10.5802/crmath.564 LA - en ID - CRMATH_2024__362_G3_301_0 ER -
%0 Journal Article %A Boccardo, Lucio %A Casado-Diaz, Juan %A Orsina, Luigi %T Dirichlet problems with skew-symmetric drift terms %J Comptes Rendus. Mathématique %D 2024 %P 301-306 %V 362 %N G3 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.564/ %R 10.5802/crmath.564 %G en %F CRMATH_2024__362_G3_301_0
Boccardo, Lucio; Casado-Diaz, Juan; Orsina, Luigi. Dirichlet problems with skew-symmetric drift terms. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 301-306. doi: 10.5802/crmath.564
[1] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (1995) no. 2, pp. 241-273 | MR
[2] Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital. (9), Volume 2 (2009) no. 1, pp. 285-297 | MR
[3] Dirichlet problems with singular convection terms and applications, J. Differ. Equations, Volume 258 (2015) no. 7, pp. 2290-2314 | DOI | MR
[4] Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift, ESAIM, Control Optim. Calc. Var., Volume 25 (2019), 47, 13 pages | DOI | MR
[5] Weak maximum principle for Dirichlet problems with convection or drift terms, Math. Eng., Volume 3 (2021) no. 3, 026, 9 pages | DOI | MR | Zbl
[6] The impact of the zero order term in the study of Dirichlet problems with convection or drift terms, Rev. Mat. Complut., Volume 36 (2023) no. 2, pp. 571-605 | DOI | MR
[7] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989) no. 1, pp. 149-169 | DOI | MR
[8] A class of second-order linear elliptic equations with drift: renormalized solutions, uniqueness and homogenization, Potential Anal., Volume 43 (2015) no. 3, pp. 399-413 | DOI | MR
[9] A drift homogenization problem revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (2012) no. 1, pp. 1-39 | MR | Numdam
[10] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 28 (1999) no. 4, pp. 741-808 | MR | Numdam
[11] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (reprint of the 1998 edition) | MR | DOI
[12] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Volume 15 (1965) no. 1, pp. 189-258 | MR | DOI | Numdam
Cité par Sources :





