A pro- Cappitt group is a pro- group such that is a proper subgroup (i.e. ). In this paper we prove that non-abelian pro- Cappitt groups whose torsion subgroup is closed and it has finite exponent. This result is a natural continuation of main result of the first author [7]. We also prove that in a pro- Cappitt group its subgroup commutator is a procyclic central subgroup. Finally we show that pro- Cappitt groups of exponent are pro- Dedekind groups. These results are pro- versions of the generalized Dedekind groups studied by Cappitt (see Theorem 1 and Lemma 7 in [1]).
Révisé le :
Accepté le :
Publié le :
Keywords: Generalized Dedekind groups, pro-$p$ Cappitt groups, torsion groups.
Porto, Anderson  1 , 2 ; Lima, Igor  1 , 2
CC-BY 4.0
@article{CRMATH_2024__362_G3_287_0,
author = {Porto, Anderson and Lima, Igor},
title = {On {Pro-}$p$ {Cappitt} {Groups} with finite exponent},
journal = {Comptes Rendus. Math\'ematique},
pages = {287--292},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G3},
doi = {10.5802/crmath.562},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.562/}
}
TY - JOUR AU - Porto, Anderson AU - Lima, Igor TI - On Pro-$p$ Cappitt Groups with finite exponent JO - Comptes Rendus. Mathématique PY - 2024 SP - 287 EP - 292 VL - 362 IS - G3 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.562/ DO - 10.5802/crmath.562 LA - en ID - CRMATH_2024__362_G3_287_0 ER -
%0 Journal Article %A Porto, Anderson %A Lima, Igor %T On Pro-$p$ Cappitt Groups with finite exponent %J Comptes Rendus. Mathématique %D 2024 %P 287-292 %V 362 %N G3 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.562/ %R 10.5802/crmath.562 %G en %F CRMATH_2024__362_G3_287_0
Porto, Anderson; Lima, Igor. On Pro-$p$ Cappitt Groups with finite exponent. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 287-292. doi: 10.5802/crmath.562
[1] Generalized Dedekind groups, J. Algebra, Volume 17 (1971), pp. 310-316 | Zbl | DOI | MR
[2] GAP — Groups, Algorithms, and Programming, Version 4.10.2, 2019 (http://www.gap-system.org)
[3] Compact torsion groups and finite exponent, Arch. Math., Volume 33 (1980), pp. 404-410 | DOI | MR
[4] An arithmetic property of profinite groups, Manuscr. Math., Volume 37 (1982), pp. 11-17 | DOI | MR
[5] On the structure of generalized Hamiltonian groups, Arch. Math., Volume 75 (2000) no. 5, pp. 328-337 | DOI | MR
[6] Fundamentals of the Theory of Groups, Graduate Texts in Mathematics, 62, Springer, 1979 | Zbl | DOI
[7] Profinite Cappitt groups, Quaest. Math., Volume 44 (2021) no. 3, pp. 307-311 | DOI | MR | Zbl
[8] Profinite Dedekind groups, Far East J. Math. Sci., Volume 126 (2020) no. 1, pp. 89-97
[9] Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40, Springer, 2010 | DOI
[10] A course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, 1996 | DOI
[11] An introduction to the theory of Groups, Graduate Texts in Mathematics, 148, Springer, 1995 | Zbl | DOI
[12] Profinite Groups, London Mathematical Society Monographs. New Series, Clarendon Press, 1998 | DOI
[13] On periodic compact groups, Isr. J. Math., Volume 77 (1992) no. 1-2, pp. 83-95 | DOI | MR
Cité par Sources :





