Article de recherche - Algèbre, Théorie des représentations
Derived equivalences of upper-triangular ring spectra via lax limits
[Équivalences dérivées de spectres en anneaux triangulaires supérieurs via limites laxes]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 279-285

We extend a theorem of Ladkani concerning derived equivalences between upper-triangular matrix rings to ring spectra. Our result also extends an analogous theorem of Maycock for differential graded algebras. We illustrate the main result with certain canonical equivalences determined by a smooth or proper ring spectrum.

Nous étendons un théorème de Ladkani concernant les équivalences dérivées entre les anneaux à matrice triangulaire supérieure aux spectres en anneaux. Notre résultat étend également un théorème analogue de Maycock pour les algèbres différentielles graduées. Nous illustrons le résultat principal par certaines équivalences canoniques déterminés par un spectre en anneaux lisse ou propre.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.559
Classification : 18G80
Keywords: Upper-triangular matrix ring, derived equivalences, reflection functors, ring spectrum
Mots-clés : Anneaux de matrices triangulaires supérieures, équivalences dérivées, foncteurs de réflexion, spectre en anneaux

Jasso, Gustavo  1

1 Lund University, Centre for Mathematical Sciences, Box 118, 22100 Lund, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G3_279_0,
     author = {Jasso, Gustavo},
     title = {Derived equivalences of upper-triangular ring spectra via lax limits},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {279--285},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G3},
     doi = {10.5802/crmath.559},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.559/}
}
TY  - JOUR
AU  - Jasso, Gustavo
TI  - Derived equivalences of upper-triangular ring spectra via lax limits
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 279
EP  - 285
VL  - 362
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.559/
DO  - 10.5802/crmath.559
LA  - en
ID  - CRMATH_2024__362_G3_279_0
ER  - 
%0 Journal Article
%A Jasso, Gustavo
%T Derived equivalences of upper-triangular ring spectra via lax limits
%J Comptes Rendus. Mathématique
%D 2024
%P 279-285
%V 362
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.559/
%R 10.5802/crmath.559
%G en
%F CRMATH_2024__362_G3_279_0
Jasso, Gustavo. Derived equivalences of upper-triangular ring spectra via lax limits. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 279-285. doi: 10.5802/crmath.559

[1] Bernšteĭn, Ioseph N.; Gelʼfand, Israilʼ M.; Ponomarev, V. A. Coxeter functors, and Gabriel’s theorem, Usp. Mat. Nauk, Volume 28 (1973) no. 2(170), pp. 19-33 | MR

[2] Bozec, Tristan; Calaque, Damien; Scherotzke, Sarah Relative critical loci and quiver moduli (to appear in Ann. Sci. École Norm. Sup.) | arXiv

[3] Brav, Christopher; Dyckerhoff, Tobias Relative Calabi–Yau structures, Compos. Math., Volume 155 (2019) no. 2, pp. 372-412 | MR | DOI | Zbl

[4] Brav, Christopher; Dyckerhoff, Tobias Relative Calabi–Yau structures II: shifted Lagrangians in the moduli of objects, Sel. Math., New Ser., Volume 27 (2021) no. 4, 63, 45 pages | DOI | MR

[5] Dyckerhoff, Tobias; Jasso, Gustavo; Walde, Tashi Generalised BGP reflection functors via the Grothendieck construction, Int. Math. Res. Not. (2021) no. 20, pp. 15733-15745 | DOI | MR

[6] Gepner, David; Haugseng, Rune; Nikolaus, Thomas Lax colimits and free fibrations in -categories, Doc. Math., Volume 22 (2017), pp. 1225-1266 | MR | DOI

[7] Ginzburg, Victor Calabi–Yau algebras (2006) | arXiv

[8] Keller, Bernhard Deformed Calabi–Yau completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 (with an appendix by Michel Van den Bergh) | DOI | MR

[9] Keller, Bernhard; Wu, Yilin Relative cluster categories and Higgs categories with infinite-dimensional morphism spaces (2023) (with an appendix Chris Fraser and Keller, Bernhard) | arXiv

[10] Kontsevich, Maxim; Soibelman, Yan Notes on A -algebras, A -categories and non-commutative geometry, Homological mirror symmetry (Lecture Notes in Physics), Volume 757, Springer, 2006, pp. 153-219 | MR

[11] Kuznetsov, Alexander; Lunts, Valery A. Categorical resolutions of irrational singularities, Int. Math. Res. Not. (2015) no. 13, pp. 4536-4625 | DOI | MR

[12] Ladkani, Sefi Derived equivalences of triangular matrix rings arising from extensions of tilting modules, Algebr. Represent. Theory, Volume 14 (2011) no. 1, pp. 57-74 | DOI | MR

[13] Lurie, Jacob Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, xviii+925 pages | MR | DOI

[14] Lurie, Jacob Higher Algebra, 2017 (available online at the author’s webpage: https://www.math.ias.edu/~lurie/papers/HA.pdf)

[15] Lurie, Jacob Spectral Algebraic Geometry, 2018 (available online at the author’s website: https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)

[16] Maycock, Daniel Derived equivalences of upper triangular differential graded algebras, Commun. Algebra, Volume 39 (2011) no. 7, pp. 2367-2387 | DOI | MR

[17] Ringel, Claus Michael Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099, Springer, 1984, xiii+376 pages | DOI | MR

[18] Sosnilo, Vladimir Regularity of spectral stacks and discreteness of weight-hearts, Q. J. Math., Volume 73 (2022) no. 1, pp. 23-44 | DOI | MR

[19] Toën, Bertrand Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | DOI | MR

[20] Wu, Yilin Categorification of ice quiver mutation, Math. Z., Volume 304 (2023) no. 1, 11, 42 pages | DOI | MR

[21] Wu, Yilin Relative cluster categories and Higgs categories, Adv. Math., Volume 424 (2023), 109040, 112 pages | DOI | MR

[22] Yeung, Wai-Kit Relative Calabi–Yau completions (2016) | arXiv

Cité par Sources :