Article de recherche - Géométrie et Topologie
There are no primitive Teichmüller curves in Prym(2,2)
[Il n’y a pas de courbes de Teichmüller primitives dans Prym(2,2)]
Comptes Rendus. Mathématique, Tome 362 (2024) no. G2, pp. 167-170

We complete the work of Lanneau–Möller [4] to show that there are no primitive Teichmüller curves in Prym(2,2).

Nous terminons un travail initié par Lanneau et Möller [4] en montrant qu’il n’existe pas de courbes de Teichmüller primitives dans Prym(2,2).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.551

Boulanger, Julien  1   ; Freedman, Sam  2

1 France
2 United States
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G2_167_0,
     author = {Boulanger, Julien and Freedman, Sam},
     title = {There are no primitive {Teichm\"uller} curves in $\mathrm{Prym}(2,2)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {167--170},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G2},
     doi = {10.5802/crmath.551},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.551/}
}
TY  - JOUR
AU  - Boulanger, Julien
AU  - Freedman, Sam
TI  - There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 167
EP  - 170
VL  - 362
IS  - G2
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.551/
DO  - 10.5802/crmath.551
LA  - en
ID  - CRMATH_2024__362_G2_167_0
ER  - 
%0 Journal Article
%A Boulanger, Julien
%A Freedman, Sam
%T There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$
%J Comptes Rendus. Mathématique
%D 2024
%P 167-170
%V 362
%N G2
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.551/
%R 10.5802/crmath.551
%G en
%F CRMATH_2024__362_G2_167_0
Boulanger, Julien; Freedman, Sam. There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$. Comptes Rendus. Mathématique, Tome 362 (2024) no. G2, pp. 167-170. doi: 10.5802/crmath.551

[1] Bainbridge, Matt; Habegger, Philipp; Möller, Martin Teichmüller curves in genus three and just likely intersections in G m n ×G a n , Publ. Math., Inst. Hautes Étud. Sci., Volume 124 (2014), pp. 1-98 | DOI | Zbl

[2] Delecroix, Vincent; Rüth, Julian A new orbit closure in genus 8? (2021) | arXiv | DOI

[3] Hubert, Pascal; Schmidt, Thomas An Introduction to Veech Surfaces, Handbook of dynamical systems. Volume 1B, Elsevier, 2006, pp. 501-526 | Zbl

[4] Lanneau, Erwan; Moeller, Martin Non-Existence and Finiteness Results for Teichmüller Curves in Prym Loci, Exp. Math., Volume 31 (2019), pp. 621-636 | DOI | Zbl

[5] McMullen, Curtis T. Teichmüller curves in genus two: Torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006) no. 3, pp. 651-672 | DOI | Zbl

[6] McMullen, Curtis T. Dynamics of SL 2 () over moduli space in genus two, Ann. Math., Volume 165 (2007) no. 2, pp. 397-456 | DOI | MR | Zbl

[7] McMullen, Curtis T. Billiards and Teichmülller curves (2021) (https://people.math.harvard.edu/~ctm/papers/home/text/papers/tsurv/tsurv.pdf)

[8] Möller, Martin Geometry of Teichmüller curves, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Scientific (2018), pp. 2017-2034 | DOI | Zbl

[9] Winsor, Karl Uniqueness of the Veech 14-gon (2022) | arXiv | DOI

Cité par Sources :