Let be the homogenous vector bundle over associated to an irreducible representation of Sp(1). We give an image characterization of the Poisson transform of -section of . We also show that , satisfies a Hardy-type estimate.
Révisé le :
Accepté le :
Publié le :
Ouald Chaib, Achraf  1
CC-BY 4.0
@article{CRMATH_2024__362_G3_265_0,
author = {Ouald Chaib, Achraf},
title = {On the {Poisson} transform on a homogenous vector bundle over the quaternionic hyperbolic space},
journal = {Comptes Rendus. Math\'ematique},
pages = {265--273},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G3},
doi = {10.5802/crmath.550},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.550/}
}
TY - JOUR AU - Ouald Chaib, Achraf TI - On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space JO - Comptes Rendus. Mathématique PY - 2024 SP - 265 EP - 273 VL - 362 IS - G3 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.550/ DO - 10.5802/crmath.550 LA - en ID - CRMATH_2024__362_G3_265_0 ER -
%0 Journal Article %A Ouald Chaib, Achraf %T On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space %J Comptes Rendus. Mathématique %D 2024 %P 265-273 %V 362 %N G3 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.550/ %R 10.5802/crmath.550 %G en %F CRMATH_2024__362_G3_265_0
Ouald Chaib, Achraf. On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 265-273. doi: 10.5802/crmath.550
[1] Hardy-type spaces for eigenfunctions of invariant differential operators on homogeneous line bundles over Hermitian symmetric spaces, Complex Variables, Theory Appl., Volume 48 (2003) no. 10, pp. 865-876 | DOI | Zbl | MR
[2] On Poisson transforms for differential forms on real hyperbolic spaces (2021) | arXiv
[3] On Poisson transform for spinors, Tunis. J. Math., Volume 5 (2023) no. 4, pp. 771-792 | DOI | MR
[4] Fatou’s theorems and Hardy-type spaces for eigenfunctions of the invariant differential operators on symmetric spaces, Int. Math. Res. Not. (2003) no. 16, pp. 915-931 | DOI | Zbl | MR
[5] -Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold , Ann. Global Anal. Geom., Volume 61 (2022) no. 2, pp. 399-426 | DOI | Zbl | MR
[6] A characterization of the -range of the Poisson transforms on a class of vector bundles over the quaternionic hyperbolic spaces, J. Geom. Phys., Volume 194 (2023), 105019 | DOI | MR
[7] Characterization of the -range of the Poisson transform in Hyperbolic spaces, J. Lie Theory, Volume 12 (2002) no. 1, pp. 1-14 | Zbl | MR
[8] On the Poisson transform on symmetric spaces of real rank one, J. Funct. Anal., Volume 174 (2000) no. 2, pp. 513-523 | DOI | Zbl | MR
[9] A characterization of the -range of the Poisson transform related to Strichartz conjecture on symmetric spaces of noncompact type, Adv. Math., Volume 303 (2016), pp. 464-501 | DOI | Zbl | MR
[10] Eigenfunctions of invariant differential operators on a symmetric space, Ann. Math., Volume 107 (1978), pp. 1-39 | Zbl | DOI | MR
[11] Characterization of almost -eigenfunctions of the Laplace–Beltrami operator, Trans. Am. Math. Soc., Volume 366 (2014) no. 6, pp. 3191-3225 | DOI | Zbl | MR
[12] Die Poisson-transformation für homogene Vektorbündel, Ph. D. Thesis, Humboldt-Unversität, Berlin, Germany (1995)
[13] Vector valued Poisson transforms on Riemannian symmetric spaces of rank one, J. Funct. Anal., Volume 119 (1994) no. 2, pp. 358-400 | DOI | Zbl | MR
[14] Poisson transforms on vector bundles, Trans. Am. Math. Soc., Volume 350 (1998) no. 3, pp. 857-887 | Zbl | DOI | MR
Cité par Sources :





