Article de recherche - Analyse harmonique
On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 265-273

Let K× M V be the homogenous vector bundle over K/M=Sp(n)×Sp(1)/Sp(n-1)×Sp(1) associated to an irreducible representation (δ ν ,V) of Sp(1). We give an image characterization of the Poisson transform 𝒫 λ,ν of L 2 -section of K× M V. We also show that 𝒫 λ,ν f, f L p (K× M V) satisfies a Hardy-type estimate.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.550

Ouald Chaib, Achraf  1

1 Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kénitra, Morocco
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G3_265_0,
     author = {Ouald Chaib, Achraf},
     title = {On the {Poisson} transform on a homogenous vector bundle over the quaternionic hyperbolic space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {265--273},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G3},
     doi = {10.5802/crmath.550},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.550/}
}
TY  - JOUR
AU  - Ouald Chaib, Achraf
TI  - On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 265
EP  - 273
VL  - 362
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.550/
DO  - 10.5802/crmath.550
LA  - en
ID  - CRMATH_2024__362_G3_265_0
ER  - 
%0 Journal Article
%A Ouald Chaib, Achraf
%T On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
%J Comptes Rendus. Mathématique
%D 2024
%P 265-273
%V 362
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.550/
%R 10.5802/crmath.550
%G en
%F CRMATH_2024__362_G3_265_0
Ouald Chaib, Achraf. On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 265-273. doi: 10.5802/crmath.550

[1] Ben Saïd, S. Hardy-type spaces for eigenfunctions of invariant differential operators on homogeneous line bundles over Hermitian symmetric spaces, Complex Variables, Theory Appl., Volume 48 (2003) no. 10, pp. 865-876 | DOI | Zbl | MR

[2] Ben Saïd, S.; Boussejra, A.; Koufany, K. On Poisson transforms for differential forms on real hyperbolic spaces (2021) | arXiv

[3] Ben Saïd, S.; Boussejra, A.; Koufany, K. On Poisson transform for spinors, Tunis. J. Math., Volume 5 (2023) no. 4, pp. 771-792 | DOI | MR

[4] Ben Saïd, S.; Oshima, T.; Shimeno, N. Fatou’s theorems and Hardy-type spaces for eigenfunctions of the invariant differential operators on symmetric spaces, Int. Math. Res. Not. (2003) no. 16, pp. 915-931 | DOI | Zbl | MR

[5] Boussejra, A.; Imesmad, N.; Chaib, A. O. L 2 -Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold SU(r,r+b)/S(U(r)×U(r+b)), Ann. Global Anal. Geom., Volume 61 (2022) no. 2, pp. 399-426 | DOI | Zbl | MR

[6] Boussejra, A.; Ouald Chaib, A. A characterization of the L 2 -range of the Poisson transforms on a class of vector bundles over the quaternionic hyperbolic spaces, J. Geom. Phys., Volume 194 (2023), 105019 | DOI | MR

[7] Boussejra, A.; Sami, H. Characterization of the L p -range of the Poisson transform in Hyperbolic spaces, J. Lie Theory, Volume 12 (2002) no. 1, pp. 1-14 | Zbl | MR

[8] Ionescu, A. D. On the Poisson transform on symmetric spaces of real rank one, J. Funct. Anal., Volume 174 (2000) no. 2, pp. 513-523 | DOI | Zbl | MR

[9] Kaizuka, K. A characterization of the L 2 -range of the Poisson transform related to Strichartz conjecture on symmetric spaces of noncompact type, Adv. Math., Volume 303 (2016), pp. 464-501 | DOI | Zbl | MR

[10] Kashiwara, M.; Kowata, A.; Minemura, K.; Okamoto, K.; Oshima, T.; Tanaka, M. Eigenfunctions of invariant differential operators on a symmetric space, Ann. Math., Volume 107 (1978), pp. 1-39 | Zbl | DOI | MR

[11] Kumar, P.; Ray, S. K.; Sarkar, R. P. Characterization of almost L p -eigenfunctions of the Laplace–Beltrami operator, Trans. Am. Math. Soc., Volume 366 (2014) no. 6, pp. 3191-3225 | DOI | Zbl | MR

[12] Olbrich, M. Die Poisson-transformation für homogene Vektorbündel, Ph. D. Thesis, Humboldt-Unversität, Berlin, Germany (1995)

[13] van der Ven, H. Vector valued Poisson transforms on Riemannian symmetric spaces of rank one, J. Funct. Anal., Volume 119 (1994) no. 2, pp. 358-400 | DOI | Zbl | MR

[14] Yang, A. Poisson transforms on vector bundles, Trans. Am. Math. Soc., Volume 350 (1998) no. 3, pp. 857-887 | Zbl | DOI | MR

Cité par Sources :