We show that certain Tate–Shafarevich groups are unramified which enables us to give an obstruction to the Hasse principle for torsors under tori over -adic function fields.
Révisé le :
Accepté le :
Publié le :
Tian, Yisheng  1
CC-BY 4.0
@article{CRMATH_2024__362_G3_257_0,
author = {Tian, Yisheng},
title = {A {Comparison} of {Cohomological} {Obstructions} to the {Hasse} {Principle} and to {Weak} {Approximation}},
journal = {Comptes Rendus. Math\'ematique},
pages = {257--264},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
number = {G3},
doi = {10.5802/crmath.547},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.547/}
}
TY - JOUR AU - Tian, Yisheng TI - A Comparison of Cohomological Obstructions to the Hasse Principle and to Weak Approximation JO - Comptes Rendus. Mathématique PY - 2024 SP - 257 EP - 264 VL - 362 IS - G3 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.547/ DO - 10.5802/crmath.547 LA - en ID - CRMATH_2024__362_G3_257_0 ER -
%0 Journal Article %A Tian, Yisheng %T A Comparison of Cohomological Obstructions to the Hasse Principle and to Weak Approximation %J Comptes Rendus. Mathématique %D 2024 %P 257-264 %V 362 %N G3 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.547/ %R 10.5802/crmath.547 %G en %F CRMATH_2024__362_G3_257_0
Tian, Yisheng. A Comparison of Cohomological Obstructions to the Hasse Principle and to Weak Approximation. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 257-264. doi: 10.5802/crmath.547
[1] Troisième groupe de cohomologie non ramifiée des torseurs universels sur les surfaces rationnelles, Épijournal de Géom. Algébr., EPIGA, Volume 2 (2018), 12 | Zbl
[2] Birational invariants, purity and the Gersten conjecture, -theory and algebraic geometry: connections with quadratic forms and division algebras, Santa Barbara, CA (Proceedings of Symposia in Pure Mathematics), Volume 58, American Mathematical Society (1995), pp. 1-64 | Zbl | MR
[3] Descente galoisienne sur le second groupe de Chow: mise au point et applications, Doc. Math. (2015), pp. 195-220 | Zbl | MR
[4] Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math., Volume 23 (2005) no. 2, pp. 161-170 | DOI | Zbl
[5] Etale cohomology theory, Nankai Tracts in Mathematics, 13, World Scientific, 2011 | DOI | Zbl
[6] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1984 | DOI | Zbl
[7] Weak approximation for tori over -adic function fields, Int. Math. Res. Not. (2015) no. 10, pp. 2751-2783 | DOI | Zbl | MR
[8] Local-global questions for tori over -adic function fields, J. Algebr. Geom., Volume 25 (2016) no. 3, pp. 571-605 | DOI | Zbl | MR
[9] Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006 | DOI | Zbl
[10] Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007 | Zbl
[11] Obstructions to weak approximation for reductive groups over -adic function fields, J. Number Theory, Volume 220 (2021), pp. 128-162 | Zbl | DOI | MR
Cité par Sources :





