Article de recherche - Géométrie algébrique
On the group of automorphisms of Horikawa surfaces
Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 237-244

Minimal algebraic surfaces of general type X such that K X 2 =2χ(𝒪 X )-6 are called Horikawa surfaces. In this note the group of automorphisms of Horikawa surfaces is studied. The main result states that given an admissible pair (K 2 ,χ) such that K 2 =2χ-6, every irreducible component of Gieseker’s moduli space 𝔐 K 2 ,χ contains an open subset consisting of surfaces with group of automorphisms isomorphic to 2 .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.546
Classification : 14J29

Lorenzo, Vicente  1

1 Telematic Engineering Department, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés (Madrid), Spain.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G3_237_0,
     author = {Lorenzo, Vicente},
     title = {On the group of automorphisms of {Horikawa} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {237--244},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G3},
     doi = {10.5802/crmath.546},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.546/}
}
TY  - JOUR
AU  - Lorenzo, Vicente
TI  - On the group of automorphisms of Horikawa surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 237
EP  - 244
VL  - 362
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.546/
DO  - 10.5802/crmath.546
LA  - en
ID  - CRMATH_2024__362_G3_237_0
ER  - 
%0 Journal Article
%A Lorenzo, Vicente
%T On the group of automorphisms of Horikawa surfaces
%J Comptes Rendus. Mathématique
%D 2024
%P 237-244
%V 362
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.546/
%R 10.5802/crmath.546
%G en
%F CRMATH_2024__362_G3_237_0
Lorenzo, Vicente. On the group of automorphisms of Horikawa surfaces. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 237-244. doi: 10.5802/crmath.546

[1] Barth, W. P.; Hulek, K.; Peters, Chr. A. M.; Van de Ven, A. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004 | Zbl | DOI

[2] Catanese, F. On the moduli spaces of surfaces of general type, J. Differ. Geom., Volume 19 (1984), pp. 483-515 | Zbl | DOI | MR

[3] Comessatti, A. Sulle superfici multiple cicliche, Rend. Semin. Mat. Univ. Padova, Volume 1 (1930), pp. 1-45 | Zbl

[4] Enriques, F. Le superficie algebriche, con prefazione di G. Castelnuovo, Bologna: Nicola Zanichelli, 1949 | Zbl

[5] Enriques, F. Sopra le superficie algebriche di cui le curve canoniche sono iperellittiche, Rom. Acc. L. Rend. (5), Volume 5 (1986) no. 1, pp. 191-197 | Zbl

[6] Fantechi, B.; Pardini, R. Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers, Commun. Algebra, Volume 25 (1997) no. 5, pp. 1413-1441 | Zbl | DOI | MR

[7] Fischer, G. Complex analytic geometry, Lecture Notes in Mathematics, 538, Springer, 1976 | Zbl | DOI

[8] Hartshorne, R. Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl | DOI

[9] Horikawa, E. Algebraic surfaces of general type with small c 1 2 . I, Ann. Math., Volume 104 (1976), pp. 357-387 | Zbl | DOI | MR

[10] Katz, N. M.; Sarnak, P. Random matrices, Frobeniuseigenvalues, and monodromy, Colloquium Publications, 45, American Mathematical Society, 1998 | Zbl

[11] Lorenzo, V. 2 2 -actions on Horikawa surfaces, Mathematica, Volume 168 (2021) no. 3-4, pp. 535-547 | Zbl | MR

[12] Lorenzo, V. 3 -actions on Horikawa surfaces, Int. J. Math., Volume 32 (2021) no. 13, 2150097 | MR | Zbl | DOI

[13] Manetti, M. Iterated double covers and connected components of moduli spaces, Topology, Volume 36 (1996) no. 3, pp. 745-764 | Zbl | DOI | MR

[14] Manetti, M. Automorphisms of generic cyclic covers, Rev. Mat. Univ. Complutense Madr., Volume 10 (1997) no. 1, pp. 149-156 | Zbl | MR

[15] Mendes Lopes, M.; Pardini, R. On the degree of the canonical map of a surface of general type (2021) | arXiv

[16] Miranda, R. Triple covers in algebraic geometry, Am. J. Math., Volume 107 (1985), pp. 1123-1158 | Zbl | DOI | MR

[17] Pardini, R. Abelian covers of algebraic varieties, J. Reine Angew. Math., Volume 417 (1991), pp. 191-213 | Zbl | MR

[18] Persson, U. Double coverings and surfaces of general type, Proc. Sympos., Univ. Tromsø, Tromsø, 1977 (Lecture Notes in Mathematics), Volume 687, Springer, 1978, pp. 168-195 | Zbl | MR

[19] Tan, S.-L. Galois triple covers of surfaces, Sci. China, Ser. A, Volume 34 (1991) no. 8, pp. 935-942 | Zbl | MR

Cité par Sources :