Article de recherche - Algèbre
Prime Ideals and Three-generated Ideals with Large Regularity
Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 251-255

Ananyan and Hochster proved the existence of a function Φ(m,d) such that any graded ideal I generated by m forms of degree at most d in a standard graded polynomial ring satisfies reg(I)Φ(m,d). Relatedly, Caviglia et. al. proved the existence of a function Ψ(e) such that any nondegenerate prime ideal P of degree e in a standard graded polynomial ring over an algebraically closed field satisfies reg(P)Ψ(deg(P)). We provide a construction showing that both Φ(3,d) and Ψ(e) must be at least doubly exponential in d and e, respectively. Previously known lower bounds were merely super-polynomial in both cases.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.544
Classification : 13D02, 13D05, 13P20

McCullough, Jason  1

1 Iowa State University, Department of Mathematics, Ames, IA, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G3_251_0,
     author = {McCullough, Jason},
     title = {Prime {Ideals} and {Three-generated} {Ideals} with {Large} {Regularity}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {251--255},
     year = {2024},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {G3},
     doi = {10.5802/crmath.544},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.544/}
}
TY  - JOUR
AU  - McCullough, Jason
TI  - Prime Ideals and Three-generated Ideals with Large Regularity
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 251
EP  - 255
VL  - 362
IS  - G3
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.544/
DO  - 10.5802/crmath.544
LA  - en
ID  - CRMATH_2024__362_G3_251_0
ER  - 
%0 Journal Article
%A McCullough, Jason
%T Prime Ideals and Three-generated Ideals with Large Regularity
%J Comptes Rendus. Mathématique
%D 2024
%P 251-255
%V 362
%N G3
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.544/
%R 10.5802/crmath.544
%G en
%F CRMATH_2024__362_G3_251_0
McCullough, Jason. Prime Ideals and Three-generated Ideals with Large Regularity. Comptes Rendus. Mathématique, Tome 362 (2024) no. G3, pp. 251-255. doi: 10.5802/crmath.544

[1] Ananyan, T.; Hochster, M. Small subalgebras of polynomial rings and Stillman’s conjecture, J. Am. Math. Soc., Volume 33 (2020) no. 1, pp. 291-309 | DOI | MR | Zbl

[2] Bayer, D.; Mumford, D. What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) (Symposia Mathematica), Volume 34, Cambridge University Press, 1993, pp. 1-48 | MR | Zbl

[3] Beder, J.; McCullough, J.; Núñez-Betancourt, L.; Seceleanu, A.; Snapp, B.; Stone, B. Ideals with larger projective dimension and regularity, J. Symb. Comput., Volume 46 (2011) no. 10, pp. 1105-1113 | DOI | MR | Zbl

[4] Bertram, A.; Ein, L.; Lazarsfeld, R. Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 587-602 | DOI | MR | Zbl

[5] Bruns, W. “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals, J. Algebra, Volume 39 (1976) no. 2, pp. 429-439 | DOI | MR | Zbl

[6] Caviglia, G. Koszul algebras, Castelnuovo–Mumford regularity, and generic initial ideals, Ph. D. Thesis, University of Kansas, Lawrence, USA (2004), 101 pages (published by ProQuest LLC) | MR

[7] Caviglia, G.; Chardin, M.; McCullough, J.; Peeva, I.; Varbaro, M. Regularity of prime ideals, Math. Z., Volume 291 (2019) no. 1-2, pp. 421-435 | DOI | MR | Zbl

[8] Chardin, M.; Ulrich, B. Liaison and Castelnuovo–Mumford regularity, Am. J. Math., Volume 124 (2002) no. 6, pp. 1103-1124 | MR | Zbl | DOI

[9] Choe, J. Castelnuovo–Mumford regularity of unprojections and the Eisenbud–Goto regularity conjecture (2022) | arXiv

[10] Eisenbud, D. The geometry of syzygies. A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, 229, Springer, 2005 | MR | Zbl

[11] Eisenbud, D.; Goto, S. Linear free resolutions and minimal multiplicity, J. Algebra, Volume 88 (1984) no. 1, pp. 89-133 | DOI | MR | Zbl

[12] Erman, D.; Sam, S. V.; Snowden, A. Big polynomial rings and Stillman’s conjecture, Invent. Math., Volume 218 (2019) no. 2, pp. 413-439 | DOI | MR | Zbl

[13] Gruson, L.; Lazarsfeld, R.; Peskine, C. On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math., Volume 72 (1983) no. 3, pp. 491-506 | DOI | MR | Zbl

[14] Han, J. I.; Kwak, S. Projective surfaces in 4 that are counterexamples to the Eisenbud–Goto regularity conjecture (2022) | arXiv

[15] Koh, J. Ideals generated by quadrics exhibiting double exponential degrees, J. Algebra, Volume 200 (1998) no. 1, pp. 225-245 | DOI | MR | Zbl

[16] Kwak, S. Castelnuovo regularity for smooth subvarieties of dimensions 3 and 4, J. Algebr. Geom., Volume 7 (1998) no. 1, pp. 195-206 | MR | Zbl

[17] Kwak, S. Castelnuovo–Mumford regularity bound for smooth threefolds in P 5 and extremal examples, J. Reine Angew. Math., Volume 509 (1999), pp. 21-34 | DOI | MR | Zbl

[18] Kwak, S.; Park, J. A bound for Castelnuovo–Mumford regularity by double point divisors, Adv. Math., Volume 364 (2020), 107008 | DOI | MR | Zbl

[19] Lazarsfeld, R. A sharp Castelnuovo bound for smooth surfaces, Duke Math. J., Volume 55 (1987) no. 2, pp. 423-429 | DOI | MR | Zbl

[20] McCullough, J.; Peeva, I. Counterexamples to the Eisenbud–Goto regularity conjecture, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 473-496 | DOI | MR | Zbl

[21] McCullough, J.; Peeva, I. The regularity conjecture for prime ideals in polynomial rings, EMS Surv. Math. Sci., Volume 7 (2020) no. 1, pp. 173-206 | DOI | MR | Zbl

[22] McCullough, J.; Seceleanu, A. Bounding projective dimension, Commutative algebra, Springer, 2013, pp. 551-576 | MR | Zbl | DOI

[23] Niu, W.; Park, J. A Castelnuovo–Mumford regularity bound for threefolds with rational singularities, Adv. Math., Volume 401 (2022), 108320 | DOI | MR | Zbl

[24] Noma, A. Generic inner projections of projective varieties and an application to the positivity of double point divisors, Trans. Am. Math. Soc., Volume 366 (2014) no. 9, pp. 4603-4623 | DOI | MR | Zbl

[25] Peeva, I.; Stillman, M. Open problems on syzygies and Hilbert functions, J. Commut. Algebra, Volume 1 (2009) no. 1, pp. 159-195 | DOI | MR | Zbl

[26] Pinkham, H. C. A Castelnuovo bound for smooth surfaces, Invent. Math., Volume 83 (1986) no. 2, pp. 321-332 | DOI | MR | Zbl

[27] Ran, Z. Local differential geometry and generic projections of threefolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 131-137 | MR | Zbl

Cité par Sources :